Skip to main content
Log in

Finite-temperature scaling of quantum coherence near criticality in a spin chain

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We explore quantum coherence, inherited from Wigner-Yanase skew information, to analyze quantum criticality in the anisotropic XY chain model at finite temperature. Based on the exact solutions of the Hamiltonian, the quantum coherence contained in a nearest-neighbor spin pairs reduced density matrix ρ is obtained. The first-order derivative of the quantum coherence is non-analytic around the critical point at sufficient low temperature. The finite-temperature scaling behavior and the universality are verified numerically. In particular, the quantum coherence can also detect the factorization transition in such a model at sufficient low temperature. We also show that quantum coherence contained in distant spin pairs can characterize quantum criticality and factorization phenomena at finite temperature. Our results imply that quantum coherence can serve as an efficient indicator of quantum criticality in such a model and shed considerable light on the relationships between quantum phase transitions and quantum information theory at finite temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)

  2. A. Kopp, S. Chakravarty, Nat. Phys. 1, 53 (2005)

    Article  Google Scholar 

  3. Z.H. Yang, L.P. Yang, J.H. Dai, T. Xiang, Phys. Rev. Lett. 100, 067203 (2008)

    Article  ADS  Google Scholar 

  4. P. Coleman, A.J. Schofield, Nature 433, 226 (2005)

    Article  ADS  Google Scholar 

  5. M.A. Nilsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  6. G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rotteler, H. Weinfurter, R. Werner, A. Zeilinger, Quantum Information: An Introduction to Basic Theoretical Concepts and Experiments (Beijing World Publishing Corporation, 2004)

  7. A. Abliz, H.J. Gao, X.C. Xie, Y.S. Wu, W.M. Liu, Phys. Rev. A 74, 052105 (2006)

    Article  ADS  Google Scholar 

  8. J.L. Guo, J.L. Wei, W. Qin, Q.X. Mu, Quantum Inf. Process. 14, 1429 (2015)

    Article  ADS  Google Scholar 

  9. Z.G. Li, S.M. Fei, S. Albeverio, W.M. Liu, Phys. Rev. A 80, 034301 (2009)

    Article  ADS  Google Scholar 

  10. X.Y. Hu, H. Fan, D.L. Zhou, W.M. Liu, Phys. Rev. A 85, 032102 (2012)

    Article  ADS  Google Scholar 

  11. T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. A. Osterloh, L. Amico, G. Falci, R. Fazio, Nature 416, 608 (2002)

    Article  ADS  Google Scholar 

  13. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  14. S.J. Gu, C.P. Sun, H.Q. Lin, J. Phys. A 41, 025002 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. W.L. You, Y.W. Li, S.J. Gu, Phys. Rev. E 76, 022101 (2007)

    Article  ADS  Google Scholar 

  16. P. Zanardi, N. Paunković, Phys. Rev. E 74, 031123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. W.W. Cheng, J.-M. Liu, Phys. Rev. A 82, 012308 (2010)

    Article  ADS  Google Scholar 

  18. S.L. Zhu, Phys. Rev. Lett. 96, 077206 (2006)

    Article  ADS  Google Scholar 

  19. R. Dillenschneider, Phys. Rev. B 78 224413 (2008)

    Article  ADS  Google Scholar 

  20. Y.C. Huang, Phys. Rev. B 89, 054410 (2014)

    Article  ADS  Google Scholar 

  21. M.S. Sarandy, Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  22. W.W. Cheng, Z.Z. Du, L.Y. Gong, S.M. Zhao, J.-M. Liu, Europhys. Lett. 108, 46003 (2014)

    Article  ADS  Google Scholar 

  23. J. Maziero, L.C. Céleri, R.M. Serra, M.S. Sarandy, Phys. Lett. A 376, 1540 (2012)

    Article  ADS  Google Scholar 

  24. B. Tomasello, D. Rossini, A. Hamma, L. Amico, Europhys. Lett. 96, 27002 (2011)

    Article  ADS  Google Scholar 

  25. L. Amico, D. Patanè, Europhys. Lett. 77, 17001 (2007)

    Article  ADS  Google Scholar 

  26. H.T. Quan, J. Phys. A 42, 395002 (2009)

    Article  MathSciNet  Google Scholar 

  27. T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  28. J. Maziero, H.C. Guzman, L.C. Ćeleri, M.S. Sarandy, R.M. Serra, Phys. Rev. A 82, 012106 (2010)

    Article  ADS  Google Scholar 

  29. S. Campbell, J. Richens, N. Lo Gullo, T. Busch, Phys. Rev. A 88, 062305 (2013)

    Article  ADS  Google Scholar 

  30. B. Çakmak, G. Karpat, Z. Gedik, Phys. Lett. A 376, 2982 (2012)

    Article  ADS  Google Scholar 

  31. G. Karpat, B. Çakmak, F.F. Fanchini, Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  32. W.W. Cheng, J.X. Li, C.J. Shan, L.Y. Gong, S.M. Zhao, Quantum Inf. Process. 14, 2535 (2015)

    Article  ADS  Google Scholar 

  33. E.P. Wigner, M.M. Yanase, Proc. Natl. Acad. Sci. USA 49, 910 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Luo, Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  35. S. Luo, S. Fu, C.H. Oh, Phys. Rev. A 85, 032117 (2012)

    Article  ADS  Google Scholar 

  36. S. Luo, Phys. Rev. A 73, 022324 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  37. Z.Q. Chen, Phys. Rev. A 71, 052302 (2005)

    Article  ADS  Google Scholar 

  38. D. Li, X. Li, F. Wang, H. Huang, X. Li, L.C. Kwek, Phys. Rev. A 79, 052106 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  39. W.W. Cheng, Z.J. Zhang, L.Y. Gong, S.M. Zhao, Ann. Phys. 370, 67 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. D. Girolami, T. Tufarelli, G. Adesso, Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  41. D. Girolami, Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  42. P. Pfeuty, Ann. Phys. 57, 79 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwen Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, W., Zhang, Z., Gong, L. et al. Finite-temperature scaling of quantum coherence near criticality in a spin chain. Eur. Phys. J. B 89, 144 (2016). https://doi.org/10.1140/epjb/e2016-70042-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-70042-6

Keywords

Navigation