Skip to main content
Log in

Electronic transport properties of a quinone-based molecular switch

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green’s function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I-V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. van Dijk et al., Org. Lett. 8, 2333 (2006)

    Article  Google Scholar 

  2. J. Chen et al., Appl. Phys. Lett. 77, 1224 (2000)

    Article  ADS  Google Scholar 

  3. D. Cheng, W.Y. Kim, S.K. Min, Phys. Rev. Lett. 96, 096104 (2006)

    Article  ADS  Google Scholar 

  4. J. Huang, Q.X. Li, H. Ren, J. Chem. Phys. 127, 094705 (2007)

    Article  ADS  Google Scholar 

  5. M. Qiu et al., J. Appl. Phys. 107, 063704 (2010)

    Article  ADS  Google Scholar 

  6. C.J. Xia et al., Physica E 42, 1763 (2010)

    Article  ADS  Google Scholar 

  7. Y.P. An, Z.Q. Yang, M.A. Ratner, J. Chem. Phys. 135, 044706 (2010)

    Article  ADS  Google Scholar 

  8. Z.Q. Fan et al., Phys. Lett. A 375, 3314 (2011)

    Article  ADS  Google Scholar 

  9. J.B. Pan et al., Appl. Phys. Lett. 91, 203104 (2010)

    Article  ADS  Google Scholar 

  10. G. Kwong, Z.H. Zhang, J.B. Pan, Appl. Phys. Lett. 99, 123108 (2011)

    Article  ADS  Google Scholar 

  11. J.M. Seminario, A.G. Zacarias, P.A. Derosa, J. Chem. A 105, 792 (2001)

    Google Scholar 

  12. C. Li et al., Appl. Phys. Lett. 84, 1949 (2004)

    Article  ADS  Google Scholar 

  13. M. Feng et al., J. Am. Chem. Soc. 129, 2204 (2007)

    Article  Google Scholar 

  14. G.Y. Jiang et al., Adv. Mater. 20, 2888 (2008)

    Article  Google Scholar 

  15. H.J. Liu et al., J. Phys. Chem. B 112, 6893 (2008)

    Article  Google Scholar 

  16. R. Pati, S.P. Karna, Phys. Rev. B 69, 155419 (2004)

    Article  ADS  Google Scholar 

  17. G.E. Emberly, G. Kirczenow, Phys. Rev. Lett. 91, 188301 (2003)

    Article  ADS  Google Scholar 

  18. Z.Q. Fan, K.Q. Sci. Rep. 4, 5976 (2014)

    ADS  Google Scholar 

  19. W. Chen et al., Comput. Theor. Chem. 1067, 114 (2015)

    Article  Google Scholar 

  20. B. Gui et al., Chem. Mater. 27, 6426 (2015)

    Article  MathSciNet  Google Scholar 

  21. P. Zhao et al., Physica E 406, 895 (2011)

    Article  Google Scholar 

  22. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  23. M. Brandbyge et al., Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  24. S. Rodríguez-Bolívar et al., Phys. Rev. B 83, 125424 (2011)

    Article  ADS  Google Scholar 

  25. S. Osella, P. Samori, J. Cornil, J. Phys. Chem. C 118, 18721 (2014)

    Article  Google Scholar 

  26. J. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  27. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, New York, 1995)

  28. J.M. Seminario, A.G. Zacarias, J.M. Tour, J. Am. Chem. Soc. 122, 3015 (2000)

    Article  Google Scholar 

  29. Y.H. Zhou, L.Z. Yuan, X.H. Zheng, Comp. Mater. Sci. 61, 145 (2012)

    Article  Google Scholar 

  30. Z.Q. Fan et al., Org. Electronics 13, 2954 (2012)

    Article  Google Scholar 

  31. H.Q. Wan, Y. Xu, G.H. Zhou, J. Chem. Phys. 136, 184704 (2012)

    Article  ADS  Google Scholar 

  32. T. Chen et al., RSC Adv. 4, 60376 (2014)

    Article  Google Scholar 

  33. Y. Min et al., Phys. Lett. A 379, 2637 (2015)

    Article  ADS  Google Scholar 

  34. Y. Min et al., J. Chem. Phys. 144, 064308 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-An Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YP., Bian, BA. & Yuan, PP. Electronic transport properties of a quinone-based molecular switch. Eur. Phys. J. B 89, 191 (2016). https://doi.org/10.1140/epjb/e2016-60980-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60980-2

Keywords

Navigation