Global and partitioned reconstructions of undirected complex networks

  • Ming Xu
  • Chuan-Yun Xu
  • Huan Wang
  • Yong-Kui Li
  • Jing-Bo Hu
  • Ke-Fei Cao
Regular Article

Abstract

It is a significant challenge to predict the network topology from a small amount of dynamical observations. Different from the usual framework of the node-based reconstruction, two optimization approaches (i.e., the global and partitioned reconstructions) are proposed to infer the structure of undirected networks from dynamics. These approaches are applied to evolutionary games occurring on both homogeneous and heterogeneous networks via compressed sensing, which can more efficiently achieve higher reconstruction accuracy with relatively small amounts of data. Our approaches provide different perspectives on effectively reconstructing complex networks.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    A. Majdandzic, B. Podobnik, S.V. Buldyrev, D.Y. Kenett, S. Havlin, H.E. Stanley, Nat. Phys. 10, 34 (2014)CrossRefGoogle Scholar
  2. 2.
    J.M. Pacheco, A. Traulsen, M.A. Nowak, Phys. Rev. Lett. 97, 258103 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    J. Smith, C. Theodoris, E.H. Davidson, Science 318, 794 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    R. Yang, B.-H. Wang, J. Ren, W.-J. Bai, Z.-W. Shi, W.-X. Wang, T. Zhou, Phys. Lett. A 364, 189 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    B.S. Kerner, Physica A 392, 5261 (2013)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Nature 473, 167 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Yuan, C. Zhao, Z. Di, W.-X. Wang, Y.-C. Lai, Nat. Commun. 4, 2447 (2013)ADSGoogle Scholar
  8. 8.
    M. Xu, C.-Y. Xu, H. Wang, C.-Z. Deng, K.-F. Cao, Eur. Phys. J. B 88, 168 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    D. Napoletani, T.D. Sauer, Phys. Rev. E 77, 026103 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    R. Guimerà, M. Sales-Pardo, Proc. Natl. Acad. Sci. USA 106, 22073 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    S.G. Shandilya, M. Timme, New J. Phys. 13, 013004 (2011)CrossRefGoogle Scholar
  12. 12.
    W.-X. Wang, R. Yang, Y.-C. Lai, V. Kovanis, M.A.F. Harrison, Europhys. Lett. 94, 48006 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    S. Hempel, A. Koseska, J. Kurths, Z. Nikoloski, Phys. Rev. Lett. 107, 054101 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    W.-X. Wang, Y.-C. Lai, C. Grebogi, J. Ye, Phys. Rev. X 1, 021021 (2011)Google Scholar
  15. 15.
    D. Marbach, J.C. Costello, R. Küffner, N.M. Vega, R.J. Prill, D.M. Camacho, K.R. Allison, The DREAM5 Consortium, M. Kellis, J.J. Collins, G. Stolovitzky, Nat. Methods 9, 796 (2012)CrossRefGoogle Scholar
  16. 16.
    B. Barzel, A.-L. Barabási, Nat. Biotechnol. 31, 720 (2013)CrossRefGoogle Scholar
  17. 17.
    Z. Shen, W.-X. Wang, Y. Fan, Z. Di, Y.-C. Lai, Nat. Commun. 5, 4323 (2014)ADSGoogle Scholar
  18. 18.
    M. Timme, J. Casadiego, J. Phys. A 47, 343001 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    X. Han, Z. Shen, W.-X. Wang, Z. Di, Phys. Rev. Lett. 114, 028701 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    T. Leleu, K. Aihara, Phys. Rev. E 91, 022804 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    E.S.C. Ching, P.-Y. Lai, C.Y. Leung, Phys. Rev. E 91, 030801(R) (2015)ADSCrossRefGoogle Scholar
  22. 22.
    E.J. Candès, J. Romberg, T. Tao, IEEE Trans. Inform. Theory 52, 489 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    E.J. Candès, J.K. Romberg, T. Tao, Commun. Pure Appl. Math. 59, 1207 (2006)CrossRefGoogle Scholar
  24. 24.
    D.L. Donoho, IEEE Trans. Inform. Theory 52, 1289 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    M.A. Nowak, R.M. May, Nature 359, 826 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    C. Hauert, M. Doebeli, Nature 428, 643 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    G. Szabó, C. Tőke, Phys. Rev. E 58, 69 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    G. Szabó, J. Vukov, A. Szolnoki, Phys. Rev. E 72, 047107 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    M. Perc, A. Szolnoki, G. Szabó, Phys. Rev. E 78, 066101 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    M. Perc, A. Szolnoki, BioSystems 99, 109 (2010)CrossRefGoogle Scholar
  32. 32.
    Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 2, 369 (2012)ADSGoogle Scholar
  33. 33.
    P. Erdős, A. Rényi, Publ. Math. Debrecen 6, 290 (1959)MathSciNetGoogle Scholar
  34. 34.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    A.-L. Barabási, R. Albert, Science 286, 509 (1999)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    D. Lusseau, K. Schneider, O.J. Boisseau, P. Haase, E. Slooten, S.M. Dawson, Behav. Ecol. Sociobiol. 54, 396 (2003)CrossRefGoogle Scholar
  37. 37.
    M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    L. Ma, X. Han, Z. Shen, W.-X. Wang, Z. Di, PLoS One 10, e0142837 (2015)CrossRefGoogle Scholar
  39. 39.
    A. Szolnoki, M. Perc, Z. Danku, Physica A 387, 2075 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ming Xu
    • 1
    • 2
  • Chuan-Yun Xu
    • 1
  • Huan Wang
    • 3
  • Yong-Kui Li
    • 1
  • Jing-Bo Hu
    • 1
  • Ke-Fei Cao
    • 1
  1. 1.Center for Nonlinear Complex Systems, Department of Physics, School of Physics and Astronomy, Yunnan UniversityYunnanP.R. China
  2. 2.School of Mathematical Sciences, Kaili UniversityGuizhouP.R. China
  3. 3.School of Computer Science and Technology, Baoji University of Arts and SciencesShaanxiP.R. China

Personalised recommendations