Skip to main content
Log in

Escape rate of Brownian particles from a metastable potential well under time derivative Ornstein-Uhlenbeck noise

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the escape rate of Brownian particles that move in a cubic metastable potential subjected to an internal time derivative Ornstein-Uhlenbeck noise (DOUN). This noise can induce the ballistic diffusion of force-free Brownian particles. Some new features are found. The escape rate for DOUN shows qualitative different dependence on potential well width compared with OUN which induces normal diffusion. As the potential barrier height decreases, the escape rate of DOUN deviates from Arrhenius law considerably earlier than that of Ornstein-Uhlenbeck noise (OUN). The Brownian particles escape faster under DOUN than that under OUN. A quasi-periodic oscillation occurs in transient state. A solvable case is presented to demonstrate the significant cancellation behavior in the barrier region that governs most of these phenomena. The physical mechanism of the findings can be clarified by the noise features. These characteristics should be common for internal noises that induce superdiffusion, especially the ballistic diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.A. Kramers, Physica 7, 284 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  2. P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)

    Article  ADS  Google Scholar 

  3. V.I. Melnikov, Phys. Rep. 209, 1 (1991)

    Article  ADS  Google Scholar 

  4. R. Benzi, A. Sutera, A. Vulpiani, J. Phys. A 14, L453 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  6. R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 76, 563 (1996)

    Article  ADS  Google Scholar 

  7. A. Mielke, Phys. Rev. Lett. 84, 818 (2000)

    Article  ADS  Google Scholar 

  8. A. Fiasconaro, B. Spagnolo, S. Boccaletti, Phys. Rev. E 72, 061110 (2005)

    Article  ADS  Google Scholar 

  9. C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992)

    Article  ADS  Google Scholar 

  10. Y. Xu, X. Wang, H.Q. Zhang, W. Xu, Nonlinear Dyn. 68, 7 (2012)

    Article  MathSciNet  Google Scholar 

  11. Y. Xu, R.C. Gu, H.Q. Zhang, W. Xu, J.Q. Duan, Phys. Rev. E 83, 056215 (2011)

    Article  ADS  Google Scholar 

  12. Y. Xu, S. Ma, H.Q. Zhang, Nonlinear Dyn. 65, 77 (2011)

    Article  MathSciNet  Google Scholar 

  13. P. Hänggi, P. Jung, Adv. Chem. Phys. 89, 239 (1995)

    ADS  Google Scholar 

  14. P. Hänggi, P. Riseborough, Phys. Rev. A 27, 3379 (1983)

    Article  ADS  Google Scholar 

  15. P. Hänggi, P. Jung, F. Marchesoni, J. Stat. Phys. 54, 1367 (1989)

    Article  ADS  Google Scholar 

  16. I. Goychuk, P. Hänggi, Phys. Rev. Lett. 99, 200601 (2007)

    Article  ADS  Google Scholar 

  17. R. Wackerbauer, Phys. Rev. E 59, 2872 (1999)

    Article  ADS  Google Scholar 

  18. B. Spagnolo, D. Valenti, A. Fiasconaro, Math. Biosci. Eng. 1, 185 (2004)

    Article  MathSciNet  Google Scholar 

  19. E.V. Pankratova, A.V. Polovinkin, E. Mosekilde, Eur. Phys. J. B 45, 391 (2005)

    Article  ADS  Google Scholar 

  20. E.V. Pankratova, A.V. Polovinkin, B. Spagnolo, Phys. Lett. A 344, 43 (2005)

    Article  ADS  Google Scholar 

  21. P. Hänggi, J. Stat. Phys. 42, 105 (1986)

    Article  ADS  Google Scholar 

  22. V.V. Agudov, A.A. Dubkov, B. Spagnolo, Physica A 325, 144 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. G. Sun, N. Dong, G. Mao, J. Chen, W. Xu, Z. Ji, L. Kang, P. Wu, Y. Yu, D. Xing, Phys. Rev. E 75, 021107 (2007)

    Article  ADS  Google Scholar 

  24. J.R. Chaudhuri, S. Chattopadhyay, S.K. Banik, Phys. Rev. E 76, 021125 (2007)

    Article  ADS  Google Scholar 

  25. J.R. Chaudhuri, S. Chattopadhyay, S.K. Banik, J. Chem. Phys. 128, 154513 (2008)

    Article  ADS  Google Scholar 

  26. M. Kus, K. Wódkiewicz, Phys. Rev. E 47, 4055 (1993)

    Article  ADS  Google Scholar 

  27. A. Fiasconaro, D. Valenti, B. Spagnolo, Physica A 325, 136 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Fiasconaro, B. Spagnolo, Phys. Rev. E 80, 041110 (2009)

    Article  ADS  Google Scholar 

  29. D. Valenti, C. Guarcello, B. Spagnolo, Phys. Rev. B 89, 214510 (2014)

    Article  ADS  Google Scholar 

  30. D. Valenti, L. Magazzù, P. Caldara, B. Spagnolo, Phys. Rev. B 91, 235412 (2015)

    Article  ADS  Google Scholar 

  31. P. Jung, P. Hänggi, F. Marchesoni, Phys. Rev. A 40, 5447 (1989)

    Article  ADS  Google Scholar 

  32. M. Kuś, E. Wajnryb, K. Wódkiewicz, Phys. Rev. A 42, 7500 (1990)

    Article  ADS  Google Scholar 

  33. A.N. Malakhov, A.L. Pankratov, Physica A 229, 109 (1996)

    Article  ADS  Google Scholar 

  34. P. Reimann, Phys. Rev. E 52, 1579 (1995)

    Article  ADS  Google Scholar 

  35. G. Caratti, R. Ferrando, R. Spadacini, G.E. Tommei, I. Zelenskaya, Chem. Phys. Lett. 290, 509 (1998)

    Article  ADS  Google Scholar 

  36. B.U. Felderhof, Physica A 387, 1767 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Pollak, H. Grabert, P. Hänggi, J. Chem. Phys. 91, 4073 (1989)

    Article  ADS  Google Scholar 

  38. S. Spezia, D. Persano Adorno, N. Pizzolato, B. Spagnolo, Europhys. Lett. 104, 47011 (2013)

    Article  ADS  Google Scholar 

  39. P.L. Cao, Phys. Rev. Lett. 73, 2595 (1994)

    Article  ADS  Google Scholar 

  40. T. Srokowski, Phys. Rev. E 64, 031102 (2001)

    Article  ADS  Google Scholar 

  41. J.D. Bao, Y.L. Song, Q. Ji, Y.Z. Zhuo, Phys. Rev. E 72, 011113 (2005)

    Article  ADS  Google Scholar 

  42. Z.W. Bai, J.D. Bao, Y.L. Song, Phys. Rev. E 72, 061105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  43. J.D. Bao, Phys. Rev. E 69, 016124 (2004)

    Article  ADS  Google Scholar 

  44. A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  45. J.D. Bao, Y.Z. Zhuo, F.A. Oliveira, P. Hänggi, Phys. Rev. E 74, 061111 (2006)

    Article  ADS  Google Scholar 

  46. A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983)

    Article  ADS  Google Scholar 

  47. A.J. Leggett, Phys. Rev. B 30, 1208 (1984)

    Article  ADS  Google Scholar 

  48. X.L. Wu, A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000)

    Article  ADS  Google Scholar 

  49. G.W. Ford, J.T. Lewis, R.F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  50. J.D. Bao, P. Hänggi, Y.Z. Zhuo, Phys. Rev. E 72, 061107 (2005)

    Article  ADS  Google Scholar 

  51. P. Siegle, I. Goychuk, P. Hänggi, Phys. Rev. Lett. 105, 100602 (2010)

    Article  ADS  Google Scholar 

  52. P. Siegle, I. Goychuk, P. Talkner, P. Hänggi, Phys. Rev. E 81, 011136 (2010)

    Article  ADS  Google Scholar 

  53. P. Siegle, I. Goychuk, P. Hänggi, Europhys. Lett. 93, 20002 (2011)

    Article  ADS  Google Scholar 

  54. R. Morgado, F.A. Oliverira, G.G. Batrouni, A. Hansen, Phys. Rev. Lett. 89, 100601 (2002)

    Article  ADS  Google Scholar 

  55. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan-Wu Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, ZW., Wang, P. Escape rate of Brownian particles from a metastable potential well under time derivative Ornstein-Uhlenbeck noise. Eur. Phys. J. B 89, 75 (2016). https://doi.org/10.1140/epjb/e2016-60940-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60940-x

Keywords

Navigation