Skip to main content
Log in

Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents

The European Physical Journal B Aims and scope Submit manuscript

Abstract

We introduce an analytical model to study the evolution towards equilibrium in spatial games, with ‘memory-aware’ agents, i.e., agents that accumulate their payoff over time. In particular, we focus our attention on the spatial Prisoner’s Dilemma, as it constitutes an emblematic example of a game whose Nash equilibrium is defection. Previous investigations showed that, under opportune conditions, it is possible to reach, in the evolutionary Prisoner’s Dilemma, an equilibrium of cooperation. Notably, it seems that mechanisms like motion may lead a population to become cooperative. In the proposed model, we map agents to particles of a gas so that, on varying the system temperature, they randomly move. In doing so, we are able to identify a relation between the temperature and the final equilibrium of the population, explaining how it is possible to break the classical Nash equilibrium in the spatial Prisoner’s Dilemma when considering agents able to increase their payoff over time. Moreover, we introduce a formalism to study order-disorder phase transitions in these dynamics. As result, we highlight that the proposed model allows to explain analytically how a population, whose interactions are based on the Prisoner’s Dilemma, can reach an equilibrium far from the expected one; opening also the way to define a direct link between evolutionary game theory and statistical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. M. Perc, P. Grigolini, Chaos Solitons Fractals 56, 1 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  2. M.A. Nowak, Evolutionary Dynamics: Exploring the Equations of Life (Harvard University Press, 2006)

  3. M. Tomassini, Introduction to evolutionary game theory, in Proc. Conf. on Genetic and evolutionary computation companion (2014)

  4. P.C. Julia, J. Gomez-Gardenes, A. Traulsen, Y. Moreno, New J. Phys. 11, 083031 (2009)

    Article  Google Scholar 

  5. L.M. Floria, C. Gracia-Lazaro, J. Gomez-Gardenes, Y. Moreno, Phys. Rev. E 79, 026106 (2009)

    Article  ADS  Google Scholar 

  6. J. Hofbauer, K. Sigmund, The Theory of Evolution and Dynamical Systems (Cambridge University Press, 1988)

  7. A.M. Colman, Game Theory and Its Applications (Digital Printing, 2008)

  8. M. Perc, A. Szolnoki, Phys. Rev. E 77, 011904 (2008)

    Article  ADS  Google Scholar 

  9. A. Szolnoki, M. Perc, J. R. Soc. Interface 12, 20141299 (2015)

    Article  Google Scholar 

  10. Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 1183 (2013)

    ADS  Google Scholar 

  11. A. Szolnoki, N.-G. Xie, C. Wang, M. Perc, Europhys. Lett. 96, 38002 (2011)

    Article  ADS  Google Scholar 

  12. M. Perc, A. Szolnoki, New J. Phys. 14, 043013 (2012)

    Article  ADS  Google Scholar 

  13. D. Friedman, J. Evol. Econ. 8, 15 (1998)

    Article  Google Scholar 

  14. S. Schuster, L. de Figueiredo, A. Schroeter, C. Kaleta, BioSystems 105, 147 (2011)

    Article  Google Scholar 

  15. E. Frey, Physica A 389, 4265 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. F. Fu, D.I. Rosenbloom, L. Wang, M.A. Nowak, Proc. R. Soc. B 278, 42 (2011)

    Article  Google Scholar 

  17. E. Lieberman, C. Hauert, M.A. Nowak, Nature 433, 312 (2005)

    Article  ADS  Google Scholar 

  18. S. Galam, B. Walliser, Physica A 389, 481 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Meloni, A. Buscarino, L. Fortuna, M. Frasca, J. Gomez-Gardenes, V. Latora, Y. Moreno, Phys. Rev. E 79, 067101 (2009)

    Article  ADS  Google Scholar 

  20. A. Antonioni, M. Tomassini, P. Buesser, J. Theor. Biol. 344, 40 (2014)

    Article  Google Scholar 

  21. M. Tomassini, A. Antonioni, J. Theor. Biol. 364, 154 (2015)

    Article  Google Scholar 

  22. A. Antonioni, M. Tomassini, A. Sanchez, Sci. Rep. 5, 10282 (2015)

    Article  ADS  Google Scholar 

  23. M. Perc, J. Gomez-Gardenes, A. Szolnoki, L.M. Floria, Y. Moreno, J. R. Soc. Interface 10, 20120997 (2013)

    Article  Google Scholar 

  24. M.A. Javarone, A.E. Atzeni, Comput. Soc. Netw. 2, 15 (2015)

    Article  Google Scholar 

  25. M.A. Javarone, A.E. Atzeni, S. Galam, Lect. Notes Comput. Sci. 9028, 155 (2015)

    Article  Google Scholar 

  26. M.A. Nowak, Science 314, 1560 (2006)

    Article  ADS  Google Scholar 

  27. G. Szabo, G. Fath, Phys. Rep. 446, 97 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. M.A. Nowak, R.M. May, Nature 359, 826 (1992)

    Article  ADS  Google Scholar 

  29. C. Hauert, G. Szabo, Am. J. Phys. 73, 405 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. K. Huang, Statistical Mechanics, 2nd edn. (Wiley, 1987)

  31. A. Szolnoki, G. Szabo, M. Perc, Phys. Rev. E 83, 0361101 (2011)

    Article  Google Scholar 

  32. A. Szolnoki, M. Perc, Europhys. Lett. 92, 38003 (2010)

    Article  ADS  Google Scholar 

  33. M.A. Javarone, Europhys. Lett. 110, 58003 (2015)

    Article  ADS  Google Scholar 

  34. M. Mobilia, S. Redner, Phys. Rev. E 68, 046106 (2003)

    Article  ADS  Google Scholar 

  35. A. Barra, J. Stat. Phys. 132, 787 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Alberto Javarone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javarone, M. Statistical physics of the spatial Prisoner’s Dilemma with memory-aware agents. Eur. Phys. J. B 89, 42 (2016). https://doi.org/10.1140/epjb/e2016-60901-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60901-5

Keywords

Navigation