G-factors of hole bound states in spherically symmetric potentials in cubic semiconductors

  • Dmitry MiserevEmail author
  • Oleg Sushkov
Regular Article


Holes in cubic semiconductors have effective spin 3/2 and very strong spin orbit interaction. Due to these factors properties of hole bound states are highly unusual. We consider a single hole bound by a spherically symmetric potential, this can be an acceptor or a spherically symmetric quantum dot. Linear response to an external magnetic field is characterized by the bound state Lande g-factor. We calculate analytically g-factors of all bound states.


Solid State and Materials 


  1. 1.
    J.M. Luttinger, Phys. Rev. 102, 4 (1956)CrossRefGoogle Scholar
  2. 2.
    A. Baldereschi, N.O. Lipari, Phys. Rev. B 8, 2697 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    A. Baldereschi, N.O. Lipari, Phys. Rev. B 9, 1525 (1974)ADSCrossRefGoogle Scholar
  4. 4.
    N.O. Lipari, A. Baldereschi, Solid State Commun. 25, 665 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    V. Fiorentini, Phys. Rev. B 51, 10161 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    O. Drachenko, H. Schneider, M. Helm, D. Kozlov, V. Gavrilenko, J. Wosnitza, J. Leotin, Phys. Rev. B 84, 245207 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M. Said, M.A. Kanehisha, Phys. Stat. Sol. B 157, 311 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    W.O.G. Schmitt, E. Bangert, G. Landwehr, J. Phys.: Condens. Matter 3, 6789 (1991)ADSGoogle Scholar
  9. 9.
    A.V. Malyshev, Phys. Solid State 42, 1 (2000)CrossRefGoogle Scholar
  10. 10.
    R. Atzmüller, M. Dahl, J. Kraus, G. Schaack, J. Schubert, J. Phys.: Condens. Matter 3, 6775 (1991)ADSGoogle Scholar
  11. 11.
    M. Linnarsson, E. Janzén, B. Monemar, M. Kleverman, A. Thilderkvist, Phys. Rev. B 55, 6938 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    R.A. Lewis, Y.-J. Wang, M. Henini, Phys. Rev. B 67, 235204 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    P. Fisher, G.J. Takacs, R.E.M. Vickers, A.D. Warner, Phys. Rev. B 47, 12999 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    R.J. Baker, P. Fisher, C.A. Freeth, D.S. Ryan, R.E.M. Vickers, Solid State Commun. 93, 5 (1995)CrossRefGoogle Scholar
  15. 15.
    P. Fisher, R.E.M. Vickers, Solid State Commun. 100, 4 (1996)CrossRefGoogle Scholar
  16. 16.
    P.C.J. Prabakar, R.E.M. Vickers, P. Fisher, Solid State Commun. 107, 2 (1998)Google Scholar
  17. 17.
    R.E.M. Vickers, R.A. Lewis, P. Fisher, Y.-J. Wang, Phys. Rev. B 77, 115212 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    A.K. Ramdas, S. Rodriguez, Rep. Prog. Phys. 44, 1297 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    A. Köpf, K. Lassmann, Phys. Rev. Lett. 69, 1580 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    J. van der Heijden, J. Salfi, J.A. Mol, J. Verduijn, G.C. Tettamanzi, A.R. Hamilton, N. Collaert, S. Rogge, Nano Lett. 14, 1492 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L.A. Tracy, T.W. Hargett, J.L. Reno, Appl. Phys. Lett. 104, 123101 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    R. Li, F.E. Hudson, A.S. Dzurak, A.R. Hamilton, Appl. Phys. Lett. 103, 163508 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    O. Klochan, J.C.H. Chen, A.P. Micolich, A.R. Hamilton, K. Muraki, Y. Hirayama, Appl. Phys. Lett. 96, 092103 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    J.-B. Xia, Phys. Rev. B 40, 8500 (1989)ADSCrossRefGoogle Scholar
  25. 25.
    R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer-Verlag, Berlin, Heidelberg, 2003)Google Scholar
  26. 26.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics Non-relativistic Theory (Pergamon Press, 1965)Google Scholar
  27. 27.
    Y. Komijani, M. Csontos, I. Shorubalko, U. Zülicke, T. Ihn, K. Ensslin, D. Reuter, A.D. Wieck, Europhys. Lett. 102, 37002 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Physics, University of New South WalesSydneyAustralia

Personalised recommendations