Skip to main content
Log in

Weighted multiplex network of air transportation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In several real networks large heterogeneity of links is present either in intensity or in the nature of relationships. Therefore, recent studies in network science indicate that more detailed topological information are available if weighted or multi-layer aspect is applied. In the age of globalization air transportation is a representative example of huge complex infrastructure systems, which has been analyzed from different points of view. In this paper a novel approach is applied to study the airport network as a weighted multiplex taking into account the fact that the rules and fashion of domestic and international flights differ. Restricting study to only topological features and their correlations in the system (disregarding traffic) one can see reasons why simple network approximation is not adequate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  2. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  Google Scholar 

  4. M.E.J. Newman, Networks: an Introduction (Oxford University Press, Oxford, 2010)

  5. I. Varga, in Proceedings of the International Conference on Social Modeling and Simulation, plus Econophysics Colloquium 2014 (Springer, 2015), p. 323

  6. L.A.N. Amaral, A. Scala, M. Barthélémy, H.E. Stanley, Proc. Natl. Acad. Sci. 97, 11149 (2000)

    Article  ADS  Google Scholar 

  7. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of networks: From biological nets to the Internet and WWW (Oxford University Press, Oxford, 2003)

  8. R. Guimerà, S. Mossa, A. Turtschi, L.A.N. Amaral, Proc. Natl. Acad. Sci. 102, 7794 (2005)

    Article  ADS  Google Scholar 

  9. R. Guimerà, L.A.N. Amaral, Eur. Phys. J. B 38, 381 (2004)

    Article  ADS  Google Scholar 

  10. F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, Y. Aberg, Nature 411, 907 (2002)

    Article  ADS  Google Scholar 

  11. E. Bullmore, O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009)

    Article  Google Scholar 

  12. A. Barrat, M. Barthélémy, R. Pastor-Satorras, A. Vespignani, Proc. Natl. Acad. Sci. 101, 3747 (2004)

    Article  ADS  Google Scholar 

  13. A. Barrat, M. Barthélemy, A. Vespignani, Phys. Rev. Lett. 92, 228701 (2004)

    Article  ADS  Google Scholar 

  14. G. Bagler, Physica A 387, 2972 (2008)

    Article  ADS  Google Scholar 

  15. K.-M. Lee, B. Min, K.-I. Goh, Eur. Phys. J. B 88, 48 (2015)

    Article  ADS  Google Scholar 

  16. V. Nicosia, V. Latora, Phys. Rev. E 92, 032805 (2015)

    Article  ADS  Google Scholar 

  17. V. Nicosia, G. Bianconi, V. Latora, M. Barthelemy, Phys. Rev. Lett. 111, 058701 (2013)

    Article  ADS  Google Scholar 

  18. A. Cardillo, J. Gómez-Gardeñes, M. Zanin, M. Romance, D. Papo, F. del Pozo, S. Boccaletti, Sci. Rep. 3, 1344 (2013)

    Article  ADS  Google Scholar 

  19. F. Battiston, V. Nicosia, V. Latora, Phys. Rev. E 89, 032804 (2014)

    Article  ADS  Google Scholar 

  20. K.-M. Lee, J.Y. Kim, W.-K. Cho, K.-I. Goh, I.-M. Kim, New J. Phys. 14, 033027 (2012)

    Article  ADS  Google Scholar 

  21. B. Min, S.D. Yi, K.-M. Lee, K.-I. Goh, Phys. Rev. E 89, 042811 (2014)

    Article  ADS  Google Scholar 

  22. G. Menichetti, D. Remondini, P. Panzarasa, R.J. Mondragn, G. Bianconi, Plos One 9, e97857 (2014)

    Article  Google Scholar 

  23. G. Kocsis, I. Varga, Infocomm. J. 6, 45 (2014)

    Google Scholar 

  24. S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)

    Article  ADS  Google Scholar 

  25. G. Kocsis, F. Kun, J. Stat. Mech. Theor. Exp. 10, P10014 (2008)

    Article  Google Scholar 

  26. J. Ø. H. Bakke, A. Hansen, J. Kertész, Europhys. Lett. 76, 717 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. Source of airport, airline and route datasets: http://openflights.org/data.html, accessed in August 2015

  28. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  29. J.Y. Kim, K.-I. Goh, Phys. Rev. Lett. 111, 058702 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Varga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varga, I. Weighted multiplex network of air transportation. Eur. Phys. J. B 89, 139 (2016). https://doi.org/10.1140/epjb/e2016-60887-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60887-x

Keywords

Navigation