Skip to main content
Log in

NMR parameters in gapped graphene systems

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We calculate the nuclear spin-lattice relaxation time and the Knight shift for the case of gapped graphene systems. Our calculations consider both the massive and massless gap scenarios. Both the spin-lattice relaxation time and the Knight shift depend on temperature, chemical potential, and the value of the electronic energy gap. In particular, at the Dirac point, the electronic energy gap has stronger effects on the system nuclear magnetic resonance parameters in the case of the massless gap scenario. Differently, at large values of the chemical potential, both gap scenarios behave in a similar way and the gapped graphene system approaches a Fermi gas from the nuclear magnetic resonance parameters point of view. Our results are important for nuclear magnetic resonance measurements that target the 13C active nuclei in graphene samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 206, 666 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  ADS  Google Scholar 

  4. A.H. Casto Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  5. S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Rev. Mod. Phys. 83, 407 (2011)

    Article  ADS  Google Scholar 

  6. V.P. Gusynin, S.G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005)

    Article  ADS  Google Scholar 

  7. N.M.R. Peres, F. Guinea, A.H. Castro Neto, Phys. Rev. B 73, 125411 (2006)

    Article  ADS  Google Scholar 

  8. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Science 315, 1379 (2007)

    Article  ADS  Google Scholar 

  9. A.K. Geim, K.S. Novoselev, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  10. B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Nat. Phys. 3, 192 (2007)

    Article  Google Scholar 

  11. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  12. L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)

    Article  ADS  Google Scholar 

  13. Z. Chen, Y.-M. Lin, M.J. Rooks, P. Avouris, Physica E 40, 228 (2007)

    Article  ADS  Google Scholar 

  14. M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  15. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Nat. Mater. 6, 770 (2007)

    Article  ADS  Google Scholar 

  16. S.Y. Zhou, D.A. Siegel, A.V. Fedorov, F. El Gabaly, A.K. Schmid, A.H. Castro Neto, D.-H. Lee, A. Lanzara, Nat. Mater. 7, 259 (2008)

    Article  ADS  Google Scholar 

  17. A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Nat. Phys. 3, 36 (2007)

    Article  Google Scholar 

  18. A. Bostwick, T. Ohta, J.L. McChesney, K.V. Emtsev, T. Seyller, K. Horn, R. Rotenberg, New J. Phys. 9, 385 (2007)

    Article  ADS  Google Scholar 

  19. L. Benfatto, E. Cappelluti, Phys. Rev. B 78, 115434 (2008)

    Article  ADS  Google Scholar 

  20. P.M. Singer, P. Wzietek, H. Alloul, F. Simon, H. Kuzmany, Phys. Rev. Lett. 95, 236403 (2005)

    Article  ADS  Google Scholar 

  21. C.P. Slichter, Principles of Magnetic Resonance, 3rd edn. (Springer-Verlag, New York, 1989)

  22. B. Dora, M. Gulacsi, F. Simon, H. Kuzmany, Phys. Rev. Lett. 99, 166402 (2007)

    Article  ADS  Google Scholar 

  23. W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S.J. An, M. Stoller, J. An, D. Chen, R.S. Ruoff, Science 321, 1815 (2008)

    Article  ADS  Google Scholar 

  24. O.V. Yazyev, Nano Lett. 8, 1011 (2008)

    Article  ADS  Google Scholar 

  25. J. Fischer, B. Trauzettel, D. Loss, Phys. Rev. B 80, 155401 (2009)

    Article  ADS  Google Scholar 

  26. H.O.H. Churchill, A.J. Bestwick, J.W. Harlow, F. Kuemmeth, D. Marcos, C.H. Stwertka, S.K. Watson, C.M. Marcus, Nat. Phys. 5, 321 (2009)

    Article  Google Scholar 

  27. J.C.C. Freitas, W.L. Scopel, W.S. Paz, L.V. Bernardes, F.E. Cunha-Filho, C. Speglich, F.M. Araujo-Moreira, D. Pelc, T. Cvitanic, M. Pozek, Sci. Rep. 5, 14761 (2015)

    Article  ADS  Google Scholar 

  28. B. Dora, F. Simon, Phys. Rev. Lett. 102, 197602 (2009)

    Article  ADS  Google Scholar 

  29. T. Ma, B. Dora, arXiv:0802.2387 (2008)

  30. H.O. Frota, A. Ghosh, Physica B 407, 1170 (2012)

    Article  ADS  Google Scholar 

  31. J.L. Manes, F. Guinea, M.A.H. Vozmediano, Phys. Rev. B 75, 155424 (2007)

    Article  ADS  Google Scholar 

  32. M. Koshino, T. Ando, Phys. Rev. B 81, 195431 (2010)

    Article  ADS  Google Scholar 

  33. A.W.W. Ludwig, M.P.A. Fisher, R. Shankar, G. Grinstein, Phys. Rev. B 50, 7526 (1994)

    Article  ADS  Google Scholar 

  34. A. Palyi, G. Burkard, Phys. Rev. B 80, 201404(R) (2009)

    Article  ADS  Google Scholar 

  35. G. Csiszar, A. Palyi, Phys. Rev. B 90, 245413 (2014)

    Article  ADS  Google Scholar 

  36. S.G. Sharapov, V.P. Gusynin, H. Beck, Phys. Rev. B 69, 075104 (2004)

    Article  ADS  Google Scholar 

  37. E. Cappelluti, L. Benfatto, M. Papagno, D. Pacile, P.M. Sheverdyaeva, P. Moras, Ann. Phys. 526, 387 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionel Ţifrea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crisan, M., Grosu, I. & Ţifrea, I. NMR parameters in gapped graphene systems. Eur. Phys. J. B 89, 140 (2016). https://doi.org/10.1140/epjb/e2016-60843-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60843-x

Keywords

Navigation