Skip to main content
Log in

Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

This work examines the importance of vibrational delocalization on a basic thermomechanical property of a hexagonal boron nitride monolayer, namely its thermal expansion coefficient (TEC). Using a recently parametrized bond-order potential of the Tersoff type, the TEC was theoretically obtained from the thermal variations of the lattice parameter a(T) calculated using three different methods: (i) the quasiharmonic approximation; (ii) its anharmonic improvement based on self-consistent phonons; (iii) fully anharmonic Monte Carlo simulations possibly enhanced within the path-integral framework to account for nuclear quantum effects. The results obtained with the three methods are generally consistent with one another and with other recently published data, and indicate that the TEC is negative at least up to ca. 700 K, quantum mechanical effects leading to a significant expansion by about 50% relative to the classical result. Comparison with experimental data on bulk hexagonal BN suggests significant differences, which originate from possible inaccuracies in the model that tend to underestimate the lattice parameter itself, and most likely from the 2D nature of the monolayer and the key contribution of out-of-plane modes. The effects of isotopic purity in the natural abundances of boron are found to be insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.W. Lynch, H.G. Drickamer, J. Chem. Phys. 44, 181 (1996)

    Article  ADS  Google Scholar 

  2. J.H. Edgar, in Properties of Group III Nitrides, edited by J.H. Edgar (IEE, London, 1994), p. 7

  3. E.K. Sichel, E.R. Miller, M.S. Abrahams, C.J. Buiocchi, Phys. Rev. B 13, 4607 (1976)

    Article  ADS  Google Scholar 

  4. K. Watanabe, T. Taniguchi, H. Kanda, Nat. Mater. 3, 404 (2004)

    Article  ADS  Google Scholar 

  5. Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Science 317, 932 (2007)

    Article  ADS  Google Scholar 

  6. G. Kim, A.R. Jang, H.Y. Jeong, Z. Lee, D.J. Kang, H.S. Shin, Nano Lett. 13, 1834 (2013)

    Article  ADS  Google Scholar 

  7. L. Britnell et al., Nano Lett. 12, 1707 (2012)

    Article  ADS  Google Scholar 

  8. X. Li, J. Yin, J. Zhou, W. Guo, Nanotechnology 25, 105701 (2014)

    Article  ADS  Google Scholar 

  9. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, J. Hone, Nat. Nanotechnol. 5, 722 (2010)

    Article  ADS  Google Scholar 

  10. N. Alem, R. Erni, C. Kisielowski, M.D. Rossel, W. Gannett, A. Zettl, Phys. Rev. B 80, 155425 (2009)

    Article  ADS  Google Scholar 

  11. K.N. Kudin, G.E. Scuseria, B.I. Yakobson, Phys. Rev. B 64, 235406 (2001)

    Article  ADS  Google Scholar 

  12. S.K. Singh, M. Neek-Amal, S. Costamagna, F.M. Peeters, Phys. Rev. B 87, 184106 (2013)

    Article  ADS  Google Scholar 

  13. C. Sevik, A. Kinaci, J.B. Haskins, T. Çağın, Phys. Rev. B 84, 085409 (2011)

    Article  ADS  Google Scholar 

  14. I. Jo, T. Pettes, K. Kim, T. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Nano Lett. 13, 550 (2013)

    Article  ADS  Google Scholar 

  15. M. Hu, Z. Yu, K. Zhang, L. Sun, J. Zhong, J. Phys. Chem. C 115, 8260 (2011)

    Article  Google Scholar 

  16. M. Neek-Amal, J. Beheshtian, A. Sadeghi, K.H. Michel, F.M. Peeters, J. Phys. Chem. C 117, 13261 (2013)

    Article  Google Scholar 

  17. N. Mounet, N. Marzari, Phys. Rev. B 71, 205214 (2005)

    Article  ADS  Google Scholar 

  18. M. Pozzo, D. Alfè, P. Lacovig, P. Hofmann, S. Lizzit, A. Baraldi, Phys. Rev. Lett. 106, 135501 (2011)

    Article  ADS  Google Scholar 

  19. K.V. Zakharchenko, A. Faoslino, J.H. Los, M.I. Katsnelson, J. Phys.: Condens. Matter 23, 202202 (2011)

    ADS  Google Scholar 

  20. A.L.C. da Silva, L. Candido, J.N.T. Rabelo, G.-Q. Jai, F.M. Peeters, Europhys. Lett. 107, 56004 (2014)

    Article  ADS  Google Scholar 

  21. C. Sevik, Phys. Rev. B 89, 035422 (2014)

    Article  ADS  Google Scholar 

  22. P. Anees, M.C. Valsakumar, B.K. Panigrahi, Phys. Chem. Chem. Phys. 18, 2672 (2016)

    Article  Google Scholar 

  23. W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C.N. Lau, Nat. Nanotechnol. 4, 562 (2009)

    Article  ADS  Google Scholar 

  24. D. Yoon, Y.-W. Son, H. Cheong, Nano Lett. 11, 3227 (2011)

    Article  Google Scholar 

  25. S. Linas, Y. Magnin, B. Poinsot, O. Boisron, G.D. Förster, V. Martinez, R. Fulcrand, F. Tournus, V. Dupuis, F. Rabilloud, L. Bardotti, Z. Han, D. Kalita, V. Bouchiat, F. Calvo, Phys. Rev. B 91, 075426 (2015)

    Article  ADS  Google Scholar 

  26. Y. Magnin, G.D. Förster, F. Rabilloud, F. Calvo, A. Zappelli, C. Bichara, J. Phys.: Condens. Matter 26, 185401 (2014)

    Google Scholar 

  27. B. Yates, M. Overy, O. Pirgon, Philos. Mag. 32, 847 (1975)

    Article  ADS  Google Scholar 

  28. G. Belenkii, E. Salaev, R. Suleimanov, N. Abdullaev, V. Shteinshraiber, Solid State Commun. 53, 967 (1985)

    Article  ADS  Google Scholar 

  29. W. Paszkowicz, J.B. Pelka, M. Knapp, T. Szyszko, S. Podsiadlo, Appl. Phys. A 75, 431 (2002)

    Article  ADS  Google Scholar 

  30. D.K.L. Tsang, B.J. Marsden, S.L. Fok, G. Hall, Carbon 43, 2902 (2005)

    Article  Google Scholar 

  31. J. Ranninger, Phys. Rev. A 140, 2031 (1965)

    Article  ADS  Google Scholar 

  32. T.R. Koehler, Phys. Rev. Lett. 17, 89 (1966)

    Article  ADS  Google Scholar 

  33. S.L. Mayo, B.D. Olafson, W.A. Goddard, J. Phys. Chem. 94, 8897 (1990)

    Article  Google Scholar 

  34. A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  Google Scholar 

  35. K. Albe, W. Möller, Comput. Mater. Sci. 10, 111 (1998)

    Article  Google Scholar 

  36. M.L. Liao, Y.C. Wang, S.P. Ju, T.W. Lien, L.F. Huang, J. Appl. Phys. 110, 054310 (2011)

    Article  ADS  Google Scholar 

  37. D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)

    Article  ADS  Google Scholar 

  38. J.S. Cao, G.A. Voth, J. Chem. Phys. 102, 3337 (1995)

    Article  ADS  Google Scholar 

  39. D.J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003)

  40. F. Calvo, P. Parneix, N.-T. Van-Oanh, J. Chem. Phys. 133, 074303 (2010)

    Article  ADS  Google Scholar 

  41. I. Errea, M. Calandra, F. Mauri, Phys. Rev. B 89, 064302 (2014)

    Article  ADS  Google Scholar 

  42. N.D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  43. A. Fasolino, J.H. Los, M.I. Kastnelson, Nat. Mater. 6, 858 (2007)

    Article  ADS  Google Scholar 

  44. W. Gao, R. Huang, J. Mech. Phys. Solids 66, 42 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  45. F. Calvo, J.P.K. Doye, D.J. Wales, J. Chem. Phys. 115, 9627 (2001)

    Article  ADS  Google Scholar 

  46. C.W. Wang, A.M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, A. Zettl, Phys. Rev. Lett. 97, 085901 (2006)

    Article  ADS  Google Scholar 

  47. C. Sevik, A. Kinaci, J.B. Haskins, T. Çağın, Phys. Rev. B 86, 075403 (2012)

    Article  ADS  Google Scholar 

  48. J. Che, T. Cağın, W.A. Goddard, Theor. Chem. Acc. 102, 346 (1999)

    Article  Google Scholar 

  49. N. Ooi, V. Rajan, J. Gottlieb, Y. Catherine, J.B. Adams, Modell. Simul. Mater. Sci. Eng. 14, 515 (2006)

    Article  ADS  Google Scholar 

  50. I. Georgescu, V.A. Mandelshtam, J. Chem. Phys. 137, 144106 (2012)

    Article  ADS  Google Scholar 

  51. M. Ceriotti, G. Bussi, M. Parrinello, J. Chem. Theory Comput. 6, 1170 (2010)

    Article  Google Scholar 

  52. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  53. A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235 (2013)

    Article  ADS  Google Scholar 

  54. V. Yu, E. Whiteway, J. Maassen, M. Hilke, Phys. Rev. B 84, 205407 (2011)

    Article  ADS  Google Scholar 

  55. J.E. Lee, G. Ahn, J. Shim, Y.S. Lee, S. Ryu, Nat. Commun. 3, 1024 (2012)

    Article  ADS  Google Scholar 

  56. T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, A.C. Ferrari, Phys. Rev. B 79, 205433 (2009)

    Article  ADS  Google Scholar 

  57. R.V. Gorbachev, I. Riaz, R.R. Nair, R. Jalil, L. Britnell, B.D. Belle, E.W. Hill, K.S. Novoselov, T. Watanabe, T. Taniguchi, A.K. Geim, P. Blake, Small 7, 465 (2011)

    Article  Google Scholar 

  58. B.N. Feigelson, V.M. Bermudez, J.K. Hite, Z.R. Robinson, V.D. Wheeler, K. Sridhara, S.C. Hernández, Nanoscale 7, 3694 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Calvo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo, F., Magnin, Y. Nuclear quantum effects on the thermal expansion coefficient of hexagonal boron nitride monolayer. Eur. Phys. J. B 89, 56 (2016). https://doi.org/10.1140/epjb/e2016-60839-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60839-6

Keywords

Navigation