Sum-rules and Goldstone modes from extended random phase approximation theories in Fermi systems with spontaneously broken symmetries

Colloquium

Abstract

The Self-Consistent RPA (SCRPA) approach is elaborated for cases with a continuously broken symmetry, this being the main focus of the present article. Correlations beyond standard RPA are summed up correcting for the quasi-boson approximation in standard RPA. Desirable properties of standard RPA such as fulfillment of energy weighted sum rule and appearance of Goldstone (zero) modes are kept. We show theoretically and, for a model case, numerically that, indeed, SCRPA maintains all properties of standard RPA for practically all situations of spontaneously broken symmetries. A simpler approximate form of SCRPA, the so-called renormalised RPA, also has these properties. The SCRPA equations are first outlined as an eigenvalue problem, but it is also shown how an equivalent many body Green’s function approach can be formulated.

Keywords

Computational Methods 

References

  1. 1.
    Quantum Monte Carlo Methods in Physics and Chemistry, edited by M.P. Nightingale, C.J. Umrigar (Springer, Berlin, 1999)Google Scholar
  2. 2.
    M. Holzmann, B. Bernu, C. Pierleoni, J. Mc Minis, D.M. Ceperly, V. Olevano, L. Delle Site, Phys. Rev. Lett. 107, 110402 (2011)Google Scholar
  3. 3.
    Density-Matrix Renormalization, A New Numerical Method in Physics, edited by I. Peschel, X. Wang, M. Kaulke, K. Hallberg (Springer, Berlin, 1999)Google Scholar
  4. 4.
    U. Schollwoeck, Ann. Phys. 326, 96 (2011)CrossRefADSMATHGoogle Scholar
  5. 5.
    U. Schollwoeck, Rev. Mod. Phys. 77, 259 (2005)CrossRefADSGoogle Scholar
  6. 6.
    D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)CrossRefADSGoogle Scholar
  7. 7.
    G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287 (1961)CrossRefADSMathSciNetMATHGoogle Scholar
  8. 8.
    G. Baym, Phys. Rev. 127, 1391 (1962)CrossRefADSMathSciNetMATHGoogle Scholar
  9. 9.
    G. Baym, Phys. Lett. 1, 242 (1962)CrossRefADSGoogle Scholar
  10. 10.
    D.S. Delion, P. Schuck, J. Dukelsky, Phys. Rev. C 72, 064305 (2005)CrossRefADSGoogle Scholar
  11. 11.
    J. Dukelsky, P. Schuck, Nucl. Phys. A 512, 466 (1990)CrossRefADSGoogle Scholar
  12. 12.
    J.G. Hirsch, A. Mariano, J. Dukelsky, P. Schuck, Ann. Phys. 296, 187 (2002)CrossRefADSGoogle Scholar
  13. 13.
    F. Catara, G. Piccitto, M. Sambataro, N. Van Giai, Phys. Rev. B 54, 17536 (1996)CrossRefADSGoogle Scholar
  14. 14.
    F. Catara, M. Grasso, G. Piccitto, M. Sambataro, Phys. Rev. B 58, 16070 (1998)CrossRefADSGoogle Scholar
  15. 15.
    A. Storozhenko, P. Schuck, J. Dukelsky, G. Röpke, A. Vdovin, Ann. Phys. 307, 308 (2003)CrossRefADSMATHGoogle Scholar
  16. 16.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, New York, 1980)Google Scholar
  17. 17.
    J. Dukelsky, G. Röpke, P. Schuck, Nucl. Phys. A 628, 17 (1998)CrossRefADSGoogle Scholar
  18. 18.
    M. Jemai, D.S. Delion, P. Schuck, Phys. Rev. C 88, 044004 (2013)CrossRefADSGoogle Scholar
  19. 19.
    J.P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, 1986)Google Scholar
  20. 20.
    J. Goldstone, Nuovo Cimento 19, 154 (1961)CrossRefMathSciNetMATHGoogle Scholar
  21. 21.
    W. Kohn, Phys. Rev. 123, 1242 (1961)CrossRefADSMATHGoogle Scholar
  22. 22.
    J. Reidl, G. Bene, R. Graham, P. Szépfalusy, Phys. Rev. A 63, 043605 (2001)CrossRefADSGoogle Scholar
  23. 23.
    P.W. Anderson, Physica B 112, 1900 (1958)Google Scholar
  24. 24.
    N.N. Bogoliubov, Sov. Phys. J. Exp. Theor. Phys. 34, 698 (1958)Google Scholar
  25. 25.
    R. Combescot, M.Yu. Kagan, S. Stringari, Pys. Rev. A 74, 042717 (2006)ADSGoogle Scholar
  26. 26.
    N. Martin, M. Urban, Phys. Rev. C 90, 065805 (2014)CrossRefADSGoogle Scholar
  27. 27.
    D.R. Bes, R.A. Broglia, Nucl. Phys. 80, 289 (1966)CrossRefGoogle Scholar
  28. 28.
    E. Khan, N. Sandulescu, N. Van Giai, M. Grasso, Phys. Rev. C 69, 014314 (2004)CrossRefADSGoogle Scholar
  29. 29.
    M. Tohyama, P. Schuck, Eur. Phys. J. A 32, 139 (2007)CrossRefADSGoogle Scholar
  30. 30.
    M. Tohyama, P. Schuck, Phys. Rev. C 91, 034316 (2015)CrossRefADSGoogle Scholar
  31. 31.
    M. Jemai, P. Schuck, J. Dukelsky, R. Bennaceur, Phys. Rev. B 71, 085115 (2005)CrossRefADSGoogle Scholar
  32. 32.
    M. Urban, P. Schuck, Phys. Rev. A 90, 023632 (2014)CrossRefADSGoogle Scholar
  33. 33.
    S. Schaefer, P. Schuck, Phys. Rev. B 59, 1712 (1999)CrossRefADSGoogle Scholar
  34. 34.
    J. Dukelsky, P. Schuck, Phys. Lett. B 164, 164 (1999)CrossRefGoogle Scholar
  35. 35.
    R.W. Richardson, Phys. Rev. 141, 949 (1966)CrossRefADSGoogle Scholar
  36. 36.
    G. Holzwarth, T. Yukawa, Nucl. Phys. A 219, 125 (1974)CrossRefADSGoogle Scholar
  37. 37.
    K. Hagino, G.F. Bertsch, Phys. Rev. C 61, 024307 (2000)CrossRefADSGoogle Scholar
  38. 38.
    M. Grasso, F. Catara, Phys. Rev. C 63, 014317 (2000)CrossRefADSGoogle Scholar
  39. 39.
    M. Saarela, in Introduction to Modern Methods of Quantum Many-Body Theories and Their Applications, edited by A. Fabrocini, S. Fantoni, E. Krotscheck, Series on Advances in Quantum Many Body Theory (World Scientific, London, 2002), Vol. 7Google Scholar
  40. 40.
    Yan He, Hao Guo, arXiv:1411.5100 (2014)
  41. 41.
    G. Feldman, T. Fulton, Ann. Phys. 152, 376 (1984)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Doru S. Delion
    • 1
    • 2
    • 3
  • Peter Schuck
    • 4
    • 5
  • Mitsuru Tohyama
    • 6
  1. 1.“Horia Hulubei” National Institute of Physics and Nuclear EngineeringBucharest-MăgureleRomania
  2. 2.Academy of Romanian ScientistsBucharestRomania
  3. 3.Bioterra UniversityBucharestRomania
  4. 4.Institut de Physique NucléaireOrsay CedexFrance
  5. 5.Laboratoire de Physique et Modélisation des Milieux Condensés, CNRS and Université Joseph FourierGrenoble Cedex 9France
  6. 6.Kyorin University School of MedicineTokyoJapan

Personalised recommendations