Impact of mobility structure on optimization of small-world networks of mobile agents

Abstract

In ad hoc wireless networking, units are connected to each other rather than to a central, fixed, infrastructure. Constructing and maintaining such networks create several trade-off problems between robustness, communication speed, power consumption, etc., that bridges engineering, computer science and the physics of complex systems. In this work, we address the role of mobility patterns of the agents on the optimal tuning of a small-world type network construction method. By this method, the network is updated periodically and held static between the updates. We investigate the optimal updating times for different scenarios of the movement of agents (modeling, for example, the fat-tailed trip distances, and periodicities, of human travel). We find that these mobility patterns affect the power consumption in non-trivial ways and discuss how these effects can best be handled.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    S. Kumar, V.S. Raghavan, J. Deng, Ad Hoc Networks 4, 326 (2006)

    Article  Google Scholar 

  2. 2.

    C. Thiemann, M. Treiber, A. Kesting, Phys. Rev. E 78, 036102 (2008)

    ADS  Article  Google Scholar 

  3. 3.

    Y. Hayashi, Y. Ono, Phys. Rev. E 82, 016108 (2010)

    ADS  Article  Google Scholar 

  4. 4.

    W. Krause, J. Scholz, M. Greiner, Physica A 361, 707 (2006)

    ADS  Article  Google Scholar 

  5. 5.

    P. Santi, ACM Comput. Surveys 37, 164 (2005)

    Article  Google Scholar 

  6. 6.

    J. Liu, B. Li, Distributed topology control in wireless sensor networks with asymmetric links, in Global Telecommunications Conference, 2003. GLOBECOM ’03. IEEE (2003), Vol. 3, pp. 1257–1262

  7. 7.

    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    ADS  Article  Google Scholar 

  8. 8.

    P. Holme, B.J. Kim, V. Fodor, Eur. Phys. J. B 73, 597 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    T. Camp, J. Boleng, V. Davies, Wirel. Commun. Mob. Com. 2, 483 (2002)

    Article  Google Scholar 

  10. 10.

    D. Brockmann, L. Hufnagel, T. Geisel, Nature 439, 462 (2006)

    ADS  Article  Google Scholar 

  11. 11.

    J. Park, D.S. Lee, M.C. González, J. Stat. Mech.: Theor. Exp. 2010, P11021 (2010)

    Article  Google Scholar 

  12. 12.

    M.A. González, C. Hidalgo, A.L. Barabási, Nature 453, 779 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    M.P. Freeman, N.W. Watkins, E. Yoneki, J. Crowcroft, Rhythm and Randomness in Human Contact, in 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014) (IEEE Computer Society, Los Alamitos, 2010), pp. 184–191

  14. 14.

    I. Rhee, M. Shin, S. Hong, K. Lee, S. Chong, Human Mobility Patterns and Their Impact on Routing in Human-Driven Mobile Networks, in Proceedings of the Sixth Workshop on Hot Topics in Networks, 2007

  15. 15.

    H.H. Jo, M. Karsai, J. Kertész, K. Kaski, New J. Phys. 14, 013055 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    J. Gui, A. Liu, J. Parallel Distrib. Comput. 72, 1032 (2012)

    Article  Google Scholar 

  17. 17.

    V. Lenders, J. Wagner, M. May, Analyzing the Impact of Mobility in Ad Hoc Networks, in Proceedings of the 2nd International Workshop on Multi-hop Ad Hoc Networks: From Theory to Reality, REALMAN ’06 (ACM, New York, 2006), pp. 39–46

  18. 18.

    V. Vukadinovic, F. Dreier, S. Mangold, Ad Hoc Networks 12, 17 (2014)

    Article  Google Scholar 

  19. 19.

    H. Zhu, M. Li, Studies on Urban Vehicular Ad-hoc Networks, SpringerBriefs in Computer Science (Springer, New York, 2013)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petter Holme.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, E., Holme, P. Impact of mobility structure on optimization of small-world networks of mobile agents. Eur. Phys. J. B 89, 143 (2016). https://doi.org/10.1140/epjb/e2016-60711-9

Download citation

Keywords

  • Statistical and Nonlinear Physics