Skip to main content
Log in

Excellent electromagnetic interference shielding effectiveness of chemically reduced graphitic oxide paper at 101 GHz*

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Graphitic oxide (GO) was synthesized by oxidation of graphite powder using Hummer’s method and the formed GO is solution processed into paper-like macroscopic form. Subsequently, chemically reduced graphitic oxide paper (CRGOP) is prepared by hydrazine vapours induced reduction of formed GO precursor based paper. The formation of GO and its successful reduction to RGO phase is confirmed by FTIR, Raman Spectroscopy and X-ray diffraction. It has been observed that due to high electrical conductivity ~200 micron thick CRGOP display excellent EMI shielding performance at very high frequency of 101 GHz frequency with total shielding effectiveness (SE) value of −35.49 dB (i.e. >99.97% blocking of incident EM radiation) which is much higher compared to pristine GO paper (−1.55 dB) or comparable to expanded graphite (EG) sheet (−35.61 dB). Due to their lightweight nature, these freestanding CRGOPs display average specific SE value of −221.8 dB cm3/g. Besides, their excellent flexibility and makes them potential candidate for lightweight EMI gasketing material compared to other forms of flexible carbons like EG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Saini, in Fundamentals of Conjugated Polymer Blends, Copolymers and Composites, edited by P. Saini (John Wiley & Sons, Inc., 2015), pp. 449−518

  2. H.W. Ott, Electromagnetic Compatibility Engineering (John Wiley & Sons, Inc., 2009)

  3. P. Saini, M. Arora, in New Polymers for Special Applications, edited by A. De Souza Gomes, (InTech, 2012), pp. 71−112

  4. N. Li et al., Nano Lett. 6, 1141 (2006)

    Article  ADS  Google Scholar 

  5. P. Saini et al., Nanoscale 5, 4330 (2013)

    Article  ADS  Google Scholar 

  6. C.-Y. Huang, C.-C. Wu, Eur. Polym. J. 36, 2729 (2000)

    Article  Google Scholar 

  7. T. Taka, Synth. Met. 41, 1177 (1991)

    Article  Google Scholar 

  8. J. Joo, A.J. Epstein, Appl. Phys. Lett. 65, 2278 (1994)

    Article  ADS  Google Scholar 

  9. P. Saini, in Thermoset Nanocomposites, edited by V. Mittal (Wiley-VCH Verlag GmbH & Co. KGaA, 2013), pp. 211−237

  10. Fundamentals of Conjugated Polymer Blends, Copolymers and Composites: Synthesis, Properties and Applications, edited by P. Saini (John Wiley & Sons, Inc., 2015)

  11. P. Xu et al., J. Phys. Chem. B 112, 10443 (2008)

    Article  Google Scholar 

  12. P. Saini, M. Arora, J. Mater. Chem. A 1, 8926 (2013)

    Article  Google Scholar 

  13. X.L. Dong, X.F. Zhang, H. Huang, F. Zuo, Appl. Phys. Lett. 92, 013127 (2008)

    Article  ADS  Google Scholar 

  14. H. Yu et al., J. Mater. Chem. 22, 21679 (2012)

    Article  Google Scholar 

  15. N.F. Colaneri, L.W. Schacklette, IEEE Trans. Instrum. Meas. 41, 291 (1992)

    Article  Google Scholar 

  16. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Mater. Chem. Phys. 113, 919 (2009)

    Article  Google Scholar 

  17. S.M. Abbas, M. Chandra, A. Verma, R. Chatterjee, T.C. Goel, Composites Part A 37, 2148 (2006)

    Article  Google Scholar 

  18. P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, J. Phys. Chem. C 116, 13403 (2012)

    Article  Google Scholar 

  19. W. Li et al., ACS Appl. Mater. Interfaces 5, 883 (2013)

    Article  Google Scholar 

  20. T.-H. Ting, K.-H. Wu, J. Polym. Res. 20, 127 (2013)

    Article  Google Scholar 

  21. C.C. Yang, Y.J. Gung, W.C. Hung, T.H. Ting, K.H. Wu, Compos. Sci. Technol. 70, 466 (2010)

    Article  Google Scholar 

  22. C.C. Yang, Y.J. Gung, C.C. Shih, W.C. Hung, K.H. Wu, J. Magn. Magn. Mater. 323, 933 (2011)

    Article  ADS  Google Scholar 

  23. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Synth. Met. 161, 1522 (2011)

    Article  Google Scholar 

  24. S.W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Synth. Met. 158, 251 (2008)

    Article  Google Scholar 

  25. S.W. Phang, N. Kuramoto, Polymer Compos. 31, 1548 (2010)

    Google Scholar 

  26. P. Saini, V. Choudhary, J. Mater. Sci. 48, 797 (2013)

    Article  ADS  Google Scholar 

  27. D.D.L. Chung, J. Mater. Eng. Perform. 9, 350 (2000)

    Article  Google Scholar 

  28. J. Wu, D.D. Chung, Carbon 40, 445 (2002)

    Article  Google Scholar 

  29. P. Saini, V. Choudhary, K.N. Sood, S.K. Dhawan, J. Appl. Polym. Sci. 113, 3146 (2009)

    Article  Google Scholar 

  30. P. Saini, V. Choudhary, S.K. Dhawan, Polym. Adv. Technol. 20, 355 (2009)

    Article  Google Scholar 

  31. Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Nano Lett. 5, 2131 (2005)

    Article  ADS  Google Scholar 

  32. Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Adv. Mater. 25, 1296 (2013)

    Article  Google Scholar 

  33. S.D. Khan, M. Arora, M.A. Wahab, P. Saini, J. Polym. 2014, 193058 (2014)

    Google Scholar 

  34. R.H. Baughman, Science 297, 787 (2002)

    Article  ADS  Google Scholar 

  35. A.K. Geim, Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  36. J.C. Meyer et al., Nature 446, 60 (2007)

    Article  ADS  Google Scholar 

  37. Y. Yang, M.C. Gupta, K.L. Dudley, R.W.A. Lawrence, J. Nanosci. Nanotechnol. 5, 927 (2005)

    Article  Google Scholar 

  38. V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Macromol. Mater. Eng. 296, 894 (2011)

    Article  Google Scholar 

  39. M.M. Bernal et al., RSC Advances 4, 7911 (2014)

    Article  Google Scholar 

  40. R. Kumar, S.R. Dhakate, P. Saini, R.B. Mathur, RSC Advances 3, 4145 (2013)

    Article  Google Scholar 

  41. J. Liang et al., Carbon 47, 922 (2009)

    Article  Google Scholar 

  42. P. Verma, P. Saini, R.S. Malik, V. Choudhary, Carbon 89, 308 (2015)

    Article  Google Scholar 

  43. S.N. Tripathi, P. Saini, D. Gupta, V. Choudhary, J. Mater. Sci. 48, 6223 (2013)

    Article  ADS  Google Scholar 

  44. H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, ACS Appl. Mater. Interfaces 3, 918 (2011)

    Article  Google Scholar 

  45. W.-L. Song et al., J. Mater. Chem. C 2, 5057 (2014)

    Article  Google Scholar 

  46. L. Zhang et al., Carbon 82, 353 (2015)

    Article  Google Scholar 

  47. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  48. I.K. Moon, J. Lee, R.S. Ruoff, H. Lee, Nat. Commun. 1, 1 (2010)

    Article  Google Scholar 

  49. S. Stankovich et al., Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  50. R.B. Schulz, V.C. Plantz, D.R. Brush, IEEE Trans. Electromag. Compatibility 30, 187 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen Saini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, P., Kaushik, S., Sharma, R. et al. Excellent electromagnetic interference shielding effectiveness of chemically reduced graphitic oxide paper at 101 GHz*. Eur. Phys. J. B 89, 137 (2016). https://doi.org/10.1140/epjb/e2016-60624-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60624-7

Navigation