Skip to main content
Log in

Phase transitions for information diffusion in random clustered networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the conditions for the phase transitions of information diffusion in complex networks. Using the random clustered network model, a generalisation of the Chung-Lu random network model incorporating clustering, we examine the effect of clustering under the Susceptible-Infected-Recovered (SIR) epidemic diffusion model with heterogeneous contact rates. For this purpose, we exploit the branching process to analyse information diffusion in random unclustered networks with arbitrary contact rates, and provide novel iterative algorithms for estimating the conditions and sizes of global cascades, respectively. Showing that a random clustered network can be mapped into a factor graph, which is a locally tree-like structure, we successfully extend our analysis to random clustered networks with heterogeneous contact rates. We then identify the conditions for phase transitions of information diffusion using our method. Interestingly, for various contact rates, we prove that random clustered networks with higher clustering coefficients have strictly lower phase transition points for any given degree sequence. Finally, we confirm our analytical results with numerical simulations of both synthetically-generated and real-world networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Dodds, D.J. Watts, Phys. Rev. Lett. 92, 218701 (2004)

    Article  ADS  Google Scholar 

  2. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  3. J. Kleinberg, Commun. ACM 51, 66 (2008)

    Article  Google Scholar 

  4. D. Easley, J. Kleinberg, Netwoks, Crowds, and Markets: Reasoning About a Highly Connected World (Cambridge University Press, 2010)

  5. D. Gruhl, R. Guha, D. Liben-Nowell, A. Tomkins, Information Diffusion Through Blogspace, in Proc. of the 13th WWW, 2004, pp. 491–501

  6. D. Liben-Nowell, J. Kleinberg, Proc. Natl. Acad. Sci. USA 105, 4633 (2008)

    Article  ADS  Google Scholar 

  7. J.J. Cheng, Y. Liu, B. Shen, W.G. Yuan, Eur. Phys. J. B 86, 29 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001)

    Article  ADS  Google Scholar 

  9. R.M. Anderson, R.M. May, Infectious Diseases of Humans (Oxford University Press, 1991)

  10. W.O. Kermack, A.G. McKendrick, Proc. R. Soc. Lond. A 115, 700 (1927)

    Article  ADS  Google Scholar 

  11. J.C. Miller, A.C. Slim, E.M. Volz, J. R. Soc. Interface 9, 890 (2011)

    Article  Google Scholar 

  12. E. Kenah, J.M. Robins, J. Theor. Biol. 249, 706 (2007)

    Article  MathSciNet  Google Scholar 

  13. E. Kenah, J.M. Robins, Phys. Rev. E 76, 036113 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. J.C. Miller, Phys. Rev. E 76, 010101(R) (2007)

    Article  ADS  Google Scholar 

  15. M.E.J. Newman, Phys. Rev. E 66, 016128 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Rattana, J. Miller, I. Kiss, Math. Modell. Nat. Phenom. 9, 58 (2014)

    Article  MathSciNet  Google Scholar 

  17. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. E. Volz, Eur. Phys. J. B 63, 381 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. P. Erdős, A. Rényi, Publ. Math. 6, 290 (1959)

    Google Scholar 

  20. R.M. D’Souza, Nat. Phys. 5, 627 (2009)

    Article  Google Scholar 

  21. L.A. Meyers, B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, R.C. Brunham, J. Theor. Biol. 232, 71 (2005)

    Article  MathSciNet  Google Scholar 

  22. A.L. Barabasi, Nature 435, 207 (2005)

    Article  ADS  Google Scholar 

  23. J.L. Iribarren, E. Moro, Phys. Rev. Lett. 103, 038702 (2009)

    Article  ADS  Google Scholar 

  24. M.E.J. Newman, Phys. Rev. Lett. 103, 058701 (2009)

    Article  ADS  Google Scholar 

  25. J.C. Miller, Phys. Rev. E 80, 020901(R) (2009)

    Article  ADS  Google Scholar 

  26. F. Chung, L. Lu, Ann. Combin. 6, 125 (2002)

    Article  MathSciNet  Google Scholar 

  27. F. Chung, L. Lu, SIAM J. Discrete Math. 20, 395 (2006)

    Article  MathSciNet  Google Scholar 

  28. B. Barry, I.S. Fulmer, Acad. Manag. Rev. 29, 272 (2004)

    Google Scholar 

  29. L. Weng, A. Flammini, A. Vespignani, F. Menczer, Sci. Rep. 2, 335 (2012)

    Article  ADS  Google Scholar 

  30. R. Dunbar, How Many “Friends” Can You Really Have?, in IEEE Spectrum, 2011, Vol. 48, pp. 81–83

  31. L.A. Adamic, R.M. Lukose, A.R. Puniyani, B.A. Huberman, Phys. Rev. E 64, 046135 (2001)

    Article  ADS  Google Scholar 

  32. M.W. Hirsch, S. Smale, R.L. Devaney, in Differential Equations, Dynamical Systems, and an Introduction to Chaos (Academic press, 2004), Vol. 60

  33. B. Bollobás, Random Graphs (Oxford University Press, 2001)

  34. M. Molloy, B. Reed, Random Struct. Alg. 6, 161 (1995)

    Article  MathSciNet  Google Scholar 

  35. M. Molloy, B. Reed, Combinatorics, Probab. Comput. 7, 295 (1998)

    Article  MathSciNet  Google Scholar 

  36. M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  37. E. Kenah, J.C. Miller, Interdisciplinary Perspectives on Infectious Diseases 2011, 543520 (2011)

    Article  Google Scholar 

  38. D. Wang, Z. Wen, H. Tong, C.Y. Lin, C. Song, A.L. Barabasi, Information Spreading in Context, in Proc. of the 20th WWW, 2011, pp. 735–744

  39. D. Kempe, J. Kleinberg, E. Tardos, Maximizing the Spread of Influence through a Social Network, in Proc. of the 9th ACM SIGKDD, 2003, pp. 137–146

  40. D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, C. Faloutsos, ACM Trans. Inform. Syst. Security 10, 1 (2008)

    Article  Google Scholar 

  41. A. Ganesh, L. Massoulie, D. Towsley, The effect of network topology on the spread of epidemics, in Proc. of 24th IEEE INFOCOM, 2005, pp. 1455–1466

  42. B.A. Prakash, D. Chakrabarti, M. Faloutsos, N. Valler, C. Faloutsos, Threshold Conditions for Arbitrary Cascade Models on Arbitrary Networks, in Proc. of 11th IEEE ICDM, 2011, pp. 537–546

  43. B. Karrer, M. Newman, L. Zdeborová, Phys. Rev. Lett. 113, 208702 (2014)

    Article  ADS  Google Scholar 

  44. B. Viswanath, A. Mislove, M. Cha, K.P. Gummadi, On the Evolution of User Interaction in Facebook, in Proc. of the 2nd ACM WOSN, 2009, pp. 37–42

  45. Y.Y. Ahn, S. Han, H. Kwak, S. Moon, H. Jeong, Analysis of topological characteristics of huge online social networking services, in Proc. of the 16th WWW, 2007, pp. 835–844

  46. A.L. Barabasi, Philos. Trans. Roy. Soc. London A 371, 20120375 (2013)

    Article  ADS  Google Scholar 

  47. J.P. Gleeson, S. Melnik, A. Hackett, Phys. Rev. E 81, 066114 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  48. E. Coupechoux, M. Lelarge, Adv. Appl. Probab. 46, 985 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyomin Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, S., Shin, J., Kwak, N. et al. Phase transitions for information diffusion in random clustered networks. Eur. Phys. J. B 89, 188 (2016). https://doi.org/10.1140/epjb/e2016-60612-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60612-y

Keywords

Navigation