Skip to main content
Log in

The interfacial properties of SrRuO3/MoS2 heterojunction: a first-principles study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

First-principles calculation was used to study the interfacial properties of the SrRuO3 (1 1 1)/MoS2(√3 × √3) heterojunction. It is found that the huge magnetic moments in of monolayer MoS2 largely originate from the Ru-S hybridization for the Ru-terminated interface. Moreover, for the SrO-terminated interface, we studied mainly the metal and semiconductor contact characteristic. The calculated results show that the Schottky barrier height can be significantly reduced to zero for the SrO-terminated interface. Schottky barrier heights dominate the transport behavior of the SrRuO3/MoS2 interface. Our results not only have potential applications in spintronics devices, but also are in favour of the scaling of field effect transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  3. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  ADS  Google Scholar 

  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)

    Article  ADS  Google Scholar 

  5. K. He, C. Poole, K.F. Mak, J. Shan, Nano. Lett. 13, 2931 (2013)

    Article  ADS  Google Scholar 

  6. A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano. Lett. 10, 1271 (2010)

    Article  ADS  Google Scholar 

  7. H.L. Zheng, B.S. Yang, D.D. Wang, R.L. Han, X.B. Du, Y. Yan, Appl. Phys. Lett. 104, 132403 (2014)

    Article  ADS  Google Scholar 

  8. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  9. S.W. Han, H. Kwon, S.K. Kim, S. Ryu, W.S. Yun, D.H. Kim, J.H. Hwang, J.S. Kang, J. Baik, H.J. Shin, S.C. Hong, Phys. Rev. B 84, 045409 (2011)

    Article  ADS  Google Scholar 

  10. W. Chen, E.J.G. Santos, W.G. Zhu, E. Kaxiras, Z.Y. Zhang, Nano. Lett. 13, 509 (2013)

    Article  ADS  Google Scholar 

  11. N. Lu, H.Y. Guo, L. Li, J. Dai, L. Wang, W.N. Mei, X.J. Wu, X.C. Zeng, Nanoscale 6, 2879 (2014)

    Article  ADS  Google Scholar 

  12. J.H. Kang, W. Liu, K. Banerjee, Appl. Phys. Lett. 104, 093106 (2014)

    Article  ADS  Google Scholar 

  13. R. Laskowski, P. Blaha, T. Gallauner, K. Schwarz, Phys. Rev. Lett. 98, 106802 (2007)

    Article  ADS  Google Scholar 

  14. D. Le, D.Z. Sun, W.H. Lu, L. Bartels, T.S. Rahman, Phys. Rev. B 85, 075429 (2012)

    Article  ADS  Google Scholar 

  15. J.R. Chen, P.M. Odenthal, A.G. Swartz, G.C. Floyd, H. Wen, K.Y. Luo, R.K. Kawakami, Nano. Lett. 13, 3106 (2013)

    Article  ADS  Google Scholar 

  16. L.B. Liang, V. Meunier, Nanoscale 6, 5394 (2014)

    Article  ADS  Google Scholar 

  17. D. Xiao, G.B. Liu, W.X. Feng, X.D. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)

    Article  ADS  Google Scholar 

  18. L.Y. Gan, Q.Y. Zhang, Y.C. Cheng, U. Schwingenschlogl, Phys. Rev. B 88, 235310 (2013)

    Article  ADS  Google Scholar 

  19. P.E. Blochl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  21. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  22. D. Cao, M.Q. Cai, W.Y. Hu, C.M. Xu, J. Appl. Phys. 109, 114107 (2011)

    Article  ADS  Google Scholar 

  23. G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, P.J. Kelly, Phys. Rev. Lett. 101, 026803 (2008)

    Article  ADS  Google Scholar 

  24. S. Das, H.Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano. Lett. 13, 100 (2013)

    Article  ADS  Google Scholar 

  25. B. Kim, B.I. Min, Phys. Rev. B 89, 195411 (2014)

    Article  ADS  Google Scholar 

  26. N. Feng, W.B. Mi, Y.C. Cheng, Z.B. Guo, U. Schwingenschlogl, H.L. Bai, ACS Appl. Mater. Int. 6, 4587 (2014)

    Article  Google Scholar 

  27. K. Dolui, I. Rungger, S. Sanvito, Phys. Rev. B 87, 165402 (2013)

    Article  ADS  Google Scholar 

  28. R. Ganatra, Q. Zhang, ACS Nano 8, 4074 (2014)

    Article  Google Scholar 

  29. S. Walia, S. Balendhran, Y.C. Wang, R. Ab Kadir, A.S. Zoolfakar, P. Atkin, J.Z. Ou, S. Sriram, K. Kalantar-zadeh, M. Bhaskaran, Appl. Phys. Lett. 103, 232105 (2013)

    Article  ADS  Google Scholar 

  30. R.T. Tung, Phys. Rev. Lett. 84, 6078 (2000)

    Article  ADS  Google Scholar 

  31. R.T. Tung, Phys. Rev. B 64, 205310 (2001)

    Article  ADS  Google Scholar 

  32. L.Y. Gan, Y.J. Zhao, D. Huang, U. Schwingenschlogl, Phys. Rev. B 87, 245307 (2013)

    Article  ADS  Google Scholar 

  33. C. Gong, L. Colombo, R.M. Wallace, K. Cho, Nano. Lett. 14, 1714 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Qiu Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Wu, LJ., Zhao, YQ. et al. The interfacial properties of SrRuO3/MoS2 heterojunction: a first-principles study. Eur. Phys. J. B 89, 80 (2016). https://doi.org/10.1140/epjb/e2016-60584-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60584-x

Keywords

Navigation