Skip to main content
Log in

Quantum interferences revealed by neutron diffraction accord with a macroscopic-scale quantum-theory of ferroelectrics KH2(1−ρ)D2ρ PO4

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Neutron diffraction by single-crystals KH2(1−ρ)D2ρ PO4 at 293 K reveal quantum interferences consistent with a static lattice of entangled proton-deuteron scatterers. These crystals are represented by a macroscopic-scale condensate of phonons with continuous space-time-translation symmetry and zero-entropy. This state is energetically favored and decoherence-free over a wide temperature-range. Projection of the crystal state onto a basis of four electrically- and isotopically-distinct state-vectors accounts for isotope and pressure effects on the temperature of the ferroelectric-dielectric transition, as well as for the latent heat. At the microscopic level, an incoming wave realizes a transitory state either in the space of static positional parameters (elastic scattering) or in that of the symmetry species (energy transfer). Neutron diffraction, vibrational spectroscopy, relaxometry and neutron Compton scattering support the conclusion that proton and deuteron scatterers are separable exclusively through resonant energy-transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Busch, P. Scherrer, Naturwiss. 23, 735 (1935)

    Article  ADS  Google Scholar 

  2. I.P. Kaminow, Phys. Rev. A 138, 1539 (1965)

    Article  ADS  Google Scholar 

  3. W. Reese, L.F. May, Phys. Rev. 167, 504 (1968)

    Article  ADS  Google Scholar 

  4. W. Reese, Phys. Rev. 181, 905 (1969)

    Article  ADS  Google Scholar 

  5. J.W. Benepe, W. Reese, Phys. Rev. B 3, 3032 (1971)

    Article  ADS  Google Scholar 

  6. G.A. Samara, Phys. Rev. Lett. 27, 103 (1971)

    Article  ADS  Google Scholar 

  7. G.A. Samara, Ferroelectrics 5, 25 (1973)

    Article  Google Scholar 

  8. G.A. Samara, Ferroelectrics 7, 221 (1974)

    Article  Google Scholar 

  9. R. Blinc, M. Burgar, Phys. Stat. Sol. B 67, 689 (1975)

    Article  ADS  Google Scholar 

  10. S. Endo, T. Sawada, T. Tsukawake, Y. Kobayashi, M. Ishizuka, K. Deguchi, M. Tokunaga, Solid State Commun. 112, 655 (1999)

    Article  ADS  Google Scholar 

  11. R.H. Chen, C.-C. Yen, C.S. Shern, T. Fukami, Solid State Ionics 177, 2857 (2006)

    Article  Google Scholar 

  12. G.E. Bacon, R.S. Pease, Proc. R. Soc. A 230, 359 (1955)

    Article  ADS  Google Scholar 

  13. B. Morosin, G.A. Samara, Ferroelectrics 3, 49 (1971)

    Article  Google Scholar 

  14. F.R. Thornley, R.J. Nelmes, K.D. Rouse, Chem. Phys. Lett. 34, 175 (1975)

    Article  ADS  Google Scholar 

  15. R.J. Nelmes, Ferroelectrics 24, 237 (1980)

    Article  Google Scholar 

  16. R.J. Nelmes, G.M. Meyer, J.E. Tibballs, J. Phys. C 15, 59 (1982)

    Article  ADS  Google Scholar 

  17. J.E. Tibballs, R.J. Nelmes, G.J. McIntyre, J. Phys. C 15, 37 (1982)

    Article  ADS  Google Scholar 

  18. J.E. Tibballs, R.J. Nelmes, J. Phys. C 15, L849 (1982)

    Article  ADS  Google Scholar 

  19. W.F. Kuhs, R.J. Nelmes, J.E. Tibballs, J. Phys. C 16, L1029 (1983)

    Article  ADS  Google Scholar 

  20. R.J. Nelmes, Ferroelectrics 53, 207 (1984)

    Article  Google Scholar 

  21. R.J. Nelmes, W.F. Kuhs, C.J. Howard, J.E. Tibballs, T.W. Ryan, J. Phys. C 18, L711 (1985)

    Article  ADS  Google Scholar 

  22. M. Ichikawa, K. Motida, N. Yamada, Phys. Rev. B 36, 874 (1987)

    Article  ADS  Google Scholar 

  23. Z. Tun, R.J. Nelmes, W.F. Kuhs, R.F.D. Stansfield, J. Phys. C 21, 245 (1988)

    Article  ADS  Google Scholar 

  24. R.J. Nelmes, J. Phys. C 21, L881 (1988)

    Article  ADS  Google Scholar 

  25. S. Tanaka, Phys. Rev. B 42, 10488 (1990)

    Article  ADS  Google Scholar 

  26. M.I. McMahon, R.J. Nelmes, R.O. Piltz, W.F. Kuhs, N.G. Wright, Ferroelectrics 124, 351 (1991)

    Article  Google Scholar 

  27. J.P. Coignac, H. Poulet, J. Phys. 32, 679 (1971)

    Article  Google Scholar 

  28. Y. Tominaga, H. Urabe, M. Tokunaga, Solid State Commun. 48, 265 (1983)

    Article  ADS  Google Scholar 

  29. H. Furuta, S. Endo, M. Tokunaga, Y. Tominaga, M. Kobayashi, Solid State Commun. 117, 7 (2001)

    Article  ADS  Google Scholar 

  30. Y. Tominaga, Y. Kawahata, Y. Amo, Solid State Commun. 125, 419 (2003)

    Article  ADS  Google Scholar 

  31. Y. Kawahata, Y. Tominaga, Solid State Commun. 145, 218 (2008)

    Article  ADS  Google Scholar 

  32. I.P. Kaminow, T.C. Damen, Phys. Rev. Lett. 20, 1105 (1968)

    Article  ADS  Google Scholar 

  33. N. Lagakos, H.Z. Cummings, Phys. Rev. B 10, 1063 (1974)

    Article  ADS  Google Scholar 

  34. P.S. Peercy, Phys. Rev. B 12, 2725 (1975)

    Article  ADS  Google Scholar 

  35. Y. Tominaga, H. Urabe, Solid State Commun. 41, 561 (1982)

    Article  ADS  Google Scholar 

  36. J. Watanabe, M. Watanabe, S. Kinoshita, Phys. Rev. B 74, 132105 (2006)

    Article  ADS  Google Scholar 

  37. J. Watanabe, R. Yoshida, S. Iwane, S. Kinoshita, J. Non-Cryst. Solids 354, 112 (2008)

    Article  ADS  Google Scholar 

  38. S. Yoshioka, Y. Tsujimi, T. Yagi, Solid State Commun. 106, 577 (1998)

    Article  ADS  Google Scholar 

  39. S. Ikeda, Y. Noda, H. Sugimoto, Y. Yamada, J. Phys. Soc. Jpn 63, 1001 (1994)

    Article  ADS  Google Scholar 

  40. A.V. Belushkin, M.A. Adams, Physica B 234-236, 37 (1997)

    Article  ADS  Google Scholar 

  41. G.F. Reiter, J. Mayers, P. Platzman, Phys. Rev. Lett. 89, 135505 (2002)

    Article  ADS  Google Scholar 

  42. G. Reiter, A. Shukla, P.M. Platzman, J. Mayers, New J. Phys. 10, 013016 (2008)

    Article  ADS  Google Scholar 

  43. J.C. Slater, J. Chem. Phys. 9, 16 (1941)

    Article  ADS  Google Scholar 

  44. Y. Takagi, J. Phys. Soc. Jpn 3, 273 (1948)

    Article  ADS  Google Scholar 

  45. E.M. Senko, Phys. Rev. 121, 1599 (1961)

    Article  ADS  Google Scholar 

  46. H.B. Silsbee, E.A. Uehling, V.H. Schmidt, Phys. Rev. A 133, 165 (1964)

    Article  ADS  Google Scholar 

  47. F.Y. Wu, Z.R. Yang, J. Phys. C 16, L125 (1983)

    Article  ADS  Google Scholar 

  48. R. Blinc, J. Phys. Chem. Solids 13, 204 (1960)

    Article  ADS  Google Scholar 

  49. M.C. Lawrence, G.N. Robertson, J. Phys. C 13, L1053 (1980)

    Article  ADS  Google Scholar 

  50. G.N. Robertson, M.C. Lawrence, J. Phys. C 14, 4559 (1981)

    Article  ADS  Google Scholar 

  51. J. Skalyo Jr, B.C. Fraser, G. Shirane, Phys. Rev. B 1, 278 (1970)

    Article  ADS  Google Scholar 

  52. M. Ichikawa, Acta Cryst. B 34, 2074 (1978)

    Article  Google Scholar 

  53. M. Ichikawa, Chem. Phys. Lett. 79, 583 (1981)

    Article  ADS  Google Scholar 

  54. E. Matsushita, T. Matsubara, Prog. Theor. Phys. 67, 1 (1982)

    Article  ADS  Google Scholar 

  55. S. Endo, T. Chino, S. Tsuboi, K. Koto, Nature 340, 452 (1989)

    Article  ADS  Google Scholar 

  56. A. Katrusiak, Phys. Rev. B 48, 2992 (1993)

    Article  ADS  Google Scholar 

  57. M. Ichikawa, P. Amasaki, T. Gustafsson, I. Olovsson, Phys. Rev. B 64, 100101 (2001)

    Article  ADS  Google Scholar 

  58. K.K. Kobayashi, J. Phys. Soc. Jpn 24, 497 (1968)

    Article  ADS  Google Scholar 

  59. R. Blinc, B. Žekš, J. Phys. C 15, 4661 (1982)

    Article  ADS  Google Scholar 

  60. H. Sugimoto, S. Ikeda, Phys. Rev. Lett. 67, 1306 (1991)

    Article  ADS  Google Scholar 

  61. H. Sugimoto, S. Ikeda, J. Phys.: Condens. Matter 6, 5561 (1994)

    ADS  Google Scholar 

  62. Y. Yamada, S. Ikeda, J. Phys. Soc. Jpn 63, 3691 (1994)

    Article  ADS  Google Scholar 

  63. H. Sugimoto, S. Ikeda, J. Phys.: Condens. Matter 8, 603 (1996)

    ADS  Google Scholar 

  64. D. Merunka, B. Rakvin, Phys. Rev. B 66, 174101 (2002)

    Article  ADS  Google Scholar 

  65. A. Bussmann-Holder, H. Büttner, Phys. Rev. B 41, 9581 (1990)

    Article  ADS  Google Scholar 

  66. A. Bussmann-Holder, K.H. Michel, Phys. Rev. Lett. 80, 2173 (1998)

    Article  ADS  Google Scholar 

  67. Q. Zhang, F. Chen, N. Kioussis, S.G. Demos, H.B. Radousky, Phys. Rev. B 65, 024108 (2001)

    Article  ADS  Google Scholar 

  68. Q. Zhang, N. Kioussis, S.G. Demos, H.B. Radousky, J. Phys.: Condens. Matter 14, L89 (2002)

    ADS  Google Scholar 

  69. S. Koval, J. Kohanoff, R.L. Migoni, E. Tosatti, Phys. Rev. Lett. 89, 187602 (2002)

    Article  ADS  Google Scholar 

  70. S. Koval, J. Kohanoff, J. Lasave, G. Colizzi, R.L. Migoni, Phys. Rev. B 71, 184102 (2005)

    Article  ADS  Google Scholar 

  71. J. Lasave, S. Koval, N.S. Dalal, R. Migoni, Phys. Rev. B 72, 104104 (2005)

    Article  ADS  Google Scholar 

  72. S. Ikeda, F. Fillaux, Phys. Rev. B 59, 4134 (1999)

    Article  ADS  Google Scholar 

  73. F. Fillaux, A. Cousson, D.A. Keen, Phys. Rev. B 67, 054301 (2003)

    Article  ADS  Google Scholar 

  74. F. Fillaux, A. Cousson, M.J. Gutmann, J. Phys.: Condens. Matter 18, 3229 (2006)

    ADS  Google Scholar 

  75. F. Fillaux, A. Cousson, M.J. Gutmann, J. Phys.: Condens. Matter 20, 015225 (2008)

    ADS  Google Scholar 

  76. F. Fillaux, A. Cousson, M.J. Gutmann, J. Phys.: Condens. Matter 22, 045402 (2010)

    ADS  Google Scholar 

  77. F. Fillaux, M.-H. Limage, F. Romain, Chem. Phys. 276, 181 (2002)

    Article  ADS  Google Scholar 

  78. F. Fillaux, F. Romain, M.-H. Limage, N. Leygue, Phys. Chem. Chem. Phys. 8, 4327 (2006)

    Article  Google Scholar 

  79. F. Fillaux, A. Cousson, J. Phys.: Condens. Matter 20, 252202 (2008)

    Google Scholar 

  80. F. Fillaux, A. Cousson, J. Chem. Phys. 137, 074504 (2012)

    Article  ADS  Google Scholar 

  81. D.J. Watkin, C.K. Prout, J.R. Carruthers, P.W. Betteridge, R.I. Cooper, CRYSTALS. Issue 11. Technical report, Chemical Crystallography Laboratory, University of Oxford, England, 1996

  82. S.W. Lovesey, in Nuclear scattering, Theory of Neutron Scattered from Condensed Matter (Clarendon Press, Oxford, 1984), Vol. I

  83. V.M. Nield, D.A Keen, Diffuse neutron scattering from crystalline materials, in Oxford series on neutron scattering in condensed matter (Clarendon Press, Oxford, 2001), Vol. 14

  84. E. Joos, H.D. Zeh, Z. Phys. B 59, 223 (1985)

    Article  ADS  Google Scholar 

  85. W.H. Zurek, Phys. Today 44, 36 (1991)

    Article  Google Scholar 

  86. W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  87. P. Coleman, Nature 493, 166 (2013)

    Article  ADS  Google Scholar 

  88. M.S. Schur, Soviet Phys. 11, 394 (1966)

    Google Scholar 

  89. M.S. Schurn, Soviet Phys. 12, 181 (1967)

    Google Scholar 

  90. M. Bée, Quasielastic neutron scattering: principle and applications in solid state chemistry, biology and materials sciences (Adam Hilger, Bristol, Philadelphia, 1988)

  91. S. Haussühl, Solid State Commun. 57, 643 (1986)

    Article  ADS  Google Scholar 

  92. F. Fillaux, Chem. Phys. 74, 405 (1983)

    Article  ADS  Google Scholar 

  93. F. Fillaux, J. Tomkinson, J. Mol. Struct. 270, 339 (1992)

    Article  ADS  Google Scholar 

  94. F. Fillaux, J. Mol. Struct. 844-845, 308 (2007)

    Article  ADS  Google Scholar 

  95. G. Eckold, H. Grimm, M. Stein-Arsic, Physica B 180-181, 336 (1992)

    Article  ADS  Google Scholar 

  96. F. Fillaux, A. Cousson, J.F.R. Archilla, J. Tomkinson, J. Chem. Phys. 128, 204502 (2008)

    Article  ADS  Google Scholar 

  97. F. Fillaux, J. Tomkinson, J. Penfold, Chem. Phys. 124, 425 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Fillaux.

Electronic supplementary material

Supplementary Information

PDF file

Supplementary Information

CIF file

Supplementary Information

CIF file

Supplementary Information

CIF file

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fillaux, F., Cousson, A. Quantum interferences revealed by neutron diffraction accord with a macroscopic-scale quantum-theory of ferroelectrics KH2(1−ρ)D2ρ PO4 . Eur. Phys. J. B 89, 72 (2016). https://doi.org/10.1140/epjb/e2016-50749-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-50749-0

Keywords

Navigation