Skip to main content

Advertisement

Log in

The effect of temperature dependence of viscosity on a Brownian heat engine

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We modeled a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a spatially varying temperature. The strength for the viscous friction γ(x) is considered to decrease exponentially when the temperature T(x) of the medium increases (γ(x) = B e AT(x)) as proposed originally by Reynolds [O. Reynolds, Phil. Trans. R. Soc. London 177, 157 (1886)]. Our result depicts that the velocity of the motor is considerably higher when the viscous friction is temperature dependent than that of the case where the viscous friction is temperature independent. The dependence of the efficiency η as well as the coefficient of performance of the refrigerator P ref on model parameters is also explored. If the motor designed to achieve a high velocity against a frictional drag, in the absence of external load f, we show that Carnot efficiency or Carnot refrigerator is unattainable even at quasistatic limit as long as the viscous friction is temperature dependent A ≠ 0. On the contrary, in the limit A → 0 or in general in the presence of an external load (for any A) f ≠ 0, at quasistatic limit, Carnot efficiency or Carnot refrigerator is attainable as long as the heat exchange via kinetic energy is omitted. For all cases, far from quasistatic limit, the efficiency and the coefficient of performance of the refrigerator are higher for constant γ case than the case where γ is temperature dependent. On the other hand, if one includes the heat exchange at the boundary of the heat baths, Carnot efficiency or Carnot refrigerator is unattainable even at quasistatic limit. Moreover, the dependence for the optimized and maximum power efficiencies on the determinant model parameters is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hondou, K. Sekimoto, Phys. Rev. E 62, 6021 (2000)

    Article  ADS  Google Scholar 

  2. A.G. Marin, J.M. Sancho, Phys. Rev. E 74, 062102 (2006)

    Article  ADS  Google Scholar 

  3. N. Li, F. Zhan, P. Hänggi, B. Li, Phys. Rev. E 80, 011125 (2009)

    Article  ADS  Google Scholar 

  4. N. Li, P. Hänggi, B. Li, Europhys. Lett. 84, 40009 (2008)

    Article  ADS  Google Scholar 

  5. F. Zhan, N. Li, S. Kohler, P. Hänggi, Phys. Rev. E 80, 061115 (2009)

    Article  ADS  Google Scholar 

  6. M. Büttiker, Z. Phys. B 68, 161 (1987)

    Article  ADS  Google Scholar 

  7. N.G. van Kampen, IBM J. Res. Dev. 32, 107 (1988)

    Article  Google Scholar 

  8. R. Landauer, J. Stat. Phys. 53, 233 (1988)

    Article  ADS  Google Scholar 

  9. R. Landauer, Phys. Rev. A 12, 636 (1975)

    Article  ADS  Google Scholar 

  10. R. Landauer, Helv. Phys. Acta 56, 847 (1983)

    Google Scholar 

  11. P. Reimann, R. Bartussek, R. Häussler, P. Hänggi, Phys. Lett. A 215, 26 (1996)

    Article  ADS  Google Scholar 

  12. P. Hänggi, F. Marchesoni, F. Nori, Ann. Phys. (Leipzig) 14, 51 (2005)

    Article  ADS  MATH  Google Scholar 

  13. P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  14. M. Asfaw, M. Bekele, Eur. Phys. J. B 38, 457 (2004)

    Article  ADS  Google Scholar 

  15. M. Asfaw, M. Bekele, Phys. Rev. E 72, 056109 (2005)

    Article  ADS  Google Scholar 

  16. M. Asfaw, M. Bekele, Physica A 384, 346 (2007)

    Article  ADS  Google Scholar 

  17. M. Matsuo, S. Sasa, Physica A 276, 188 (1999)

    Article  ADS  Google Scholar 

  18. I. Derènyi, R.D. Astumian, Phys. Rev. E 59, R6219 (1999)

    Article  ADS  Google Scholar 

  19. I. Derènyi, M. Bier, R.D. Astumian, Phys. Rev. Lett. 83, 903 (1999)

    Article  ADS  Google Scholar 

  20. J.M. Sancho, M.S. Miguel, D. Dürr, J. Stat. Phys. 28, 291 (1982)

    Article  ADS  MATH  Google Scholar 

  21. B.Q. Ai, H.Z. Xie, D.H. Wen, X.M. Liu, L.G. Liu, Eur. Phys. J. B 48, 101 (2005)

    Article  ADS  Google Scholar 

  22. M. Asfaw, Eur. Phys. J. B 86, 189 (2013)

    Article  ADS  Google Scholar 

  23. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  24. M. Asfaw, Phys. Rev. E 89, 012143 (2014)

    Article  ADS  Google Scholar 

  25. O. Reynolds, Phil. Trans. R. Soc. London 177, 157 (1886)

    Article  Google Scholar 

  26. F. Jülicher, A. Ajdari, J. Prost, Rev. Mod. Phys. 69, 1269 (1997)

    Article  ADS  Google Scholar 

  27. P. Hänggi, Helv. Phys. Acta 51, 183 (1978)

    MathSciNet  Google Scholar 

  28. P. Hänggi, Helv. Phys. Acta 53, 491 (1980)

    MathSciNet  Google Scholar 

  29. J.M. Sancho, M.S. Miguel, D. Duerr, J. Stat. Phys. 28, 291 (1982)

    Article  ADS  MATH  Google Scholar 

  30. K. Sekimoto, J. Phys. Soc. Jpn 66, 1234 (1997)

    Article  ADS  Google Scholar 

  31. K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)

    Article  ADS  Google Scholar 

  32. M. Matsuo, Shin-ichi Sasa, Physica A 276, 188 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesfin Asfaw Taye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taye, M., Duki, S. The effect of temperature dependence of viscosity on a Brownian heat engine. Eur. Phys. J. B 88, 322 (2015). https://doi.org/10.1140/epjb/e2015-60782-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60782-0

Keywords

Navigation