Skip to main content
Log in

First-principles study of the structural and electronic properties of ultrathin silver nanowires

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By using first-principles calculations based on density-functional theory, we have systematically investigated the equilibrium structure, stability and electronic properties of silver nanowires (AgNWs) with dimer, triangular, square, pentagonal and hexagonal cross-section. It is found that, using the string tension criterion, for the triangular and square AgNWs with small diameters the preferred structures should be the hollow one with staggered configuration, while for the pentagonal and hexagonal AgNWs with bigger diameters the preferred structures should be the staggered ones which contain a linear chain along the wire axis passes through the center of the polygons, where each chain atom is just located at a point equidistant from the planes of polygons. Electronic band structures and density of states calculations show that the AgNWs with different structures exhibit metallic behavior. Charge density contours show that there is an enhanced interatomic interaction in AgNWs compared with Ag bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Husain, J. Hone, H.W.C. Postma, X.M.H. Huang, T. Drake, M. Barbic, A. Scherer, M.L. Roukes, Appl. Phys. Lett. 83, 1240 (2003)

    Article  ADS  Google Scholar 

  2. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  3. A.L. Klavsyuk, S.V. Kolesnikov, I.K. Gainullin, A.M. Saletsky, Eur. Phys. J. B 85, 331 (2012)

    Article  ADS  Google Scholar 

  4. C.M. Lieber, MRS Bull. 28, 486 (2003)

    Article  Google Scholar 

  5. H. Ohnishi, Y. Kondo, K. Takayanagi, Nature 395, 780 (1998)

    Article  ADS  Google Scholar 

  6. F. Sato, A.S. Moreira, J. Bettini, P.Z. Coura, S.O. Dantas, D. Ugarte, D.S. Galvão, Phys. Rev. B 74, 193401 (2006)

    Article  ADS  Google Scholar 

  7. A.I. Yanson, I.K. Yanson, J.M. van Ruitenbeek, Phys. Rev. Lett. 87, 216805 (2001)

    Article  ADS  Google Scholar 

  8. Y. Kondo, K. Takayanagi, Science 289, 606 (2000)

    Article  ADS  Google Scholar 

  9. Y. Oshima, H. Koizumi, K. Mouri, H. Hirayama, K. Takayanagi, Y. Kondo, Phys. Rev. B 65, 121401(R) (2002)

    Article  ADS  Google Scholar 

  10. Y. Oshima, A. Onga, K. Takayanagi, Phys. Rev. Lett. 91, 205503 (2003)

    Article  ADS  Google Scholar 

  11. A.I. Mares, J.M. van Ruitenbeek, Phys. Rev. B 72, 205402 (2005)

    Article  ADS  Google Scholar 

  12. V. Rodrigues, J. Bettini, A.R. Rocha, L.G.C. Rego, D. Ugarte, Phys. Rev. B 65, 153402 (2002)

    Article  ADS  Google Scholar 

  13. B.H. Hong, S.C. Bae, C.W. Lee, S. Jeong, K.S. Kim, Science 294, 348 (2001)

    Article  ADS  Google Scholar 

  14. M.J. Lagos, F. Sato, J. Bettini, V. Rodrigues, D.S. Galvão, D. Ugarte, Nat. Nanotechol. 4, 149 (2009)

    Article  ADS  Google Scholar 

  15. P.A.S. Autreto, M.J. Lagos, F. Sato, J. Bettini, A.R. Rocha, V. Rodrigues, D. Ugarte, D.S. Galvao, Phys. Rev. Lett. 106, 065501 (2011)

    Article  ADS  Google Scholar 

  16. S.B. Suh, B.H. Hong, P. Tarakeshwar, S.J. Youn, S. Jeong, K.S. Kim, Phys. Rev. B 67, 241402 (2003)

    Article  ADS  Google Scholar 

  17. J.J. Zhao, C. Buia, J. Han, J.P. Lu, Nanotechnology 14, 501 (2003)

    Article  ADS  Google Scholar 

  18. A.E. Kochetov, A.S. Mikhaylushkin, Eur. Phys. J. B 61, 441 (2008)

    Article  ADS  Google Scholar 

  19. B.K. Agrawal, S. Agrawal, S. Singh, J. Nanosci. Nanotechnol. 5, 635 (2005)

    Article  Google Scholar 

  20. S.L. Elizondo, J.W. Mintmire, Phys. Rev. B 73, 045431 (2006)

    Article  ADS  Google Scholar 

  21. J.M. Jia, D.N. Shi, J.J. Zhao, B.L. Wang, Phys. Rev. B 76, 165420 (2007)

    Article  ADS  Google Scholar 

  22. Y.N. Duan, J.M. Zhang, K.W. Xu, V. Ji, Eur. Phys. J. B 86, 364 (2013)

    Article  ADS  Google Scholar 

  23. D. Sánchez-Portal, E. Artacho, J. Junquera, P. Ordejón, A. Garcia, J.M. Soler, Phys. Rev. Lett. 83, 3884 (1999)

    Article  ADS  Google Scholar 

  24. N.V. Skorodumova, S.I. Simak, Phys. Rev. B 67, 121404(R) (2003)

    Article  ADS  Google Scholar 

  25. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)

    Article  ADS  Google Scholar 

  26. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  27. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  28. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  29. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  30. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  31. E.Yu. Zarechnaya, N.V. Skorodumova, S.I. Simak, B. Johansson, E.I. Isaev, Comput. Mater. Sci. 43, 522 (2008)

    Article  Google Scholar 

  32. G. Bozzolo, J. Ferrante, Phys. Rev. B 46, 8600 (1992)

    Article  ADS  Google Scholar 

  33. E. Tosatti, S. Prestipino, S. Kostlmeier, A. Dal Corso, F.D. Di Tolla, Science 291, 288 (2001)

    Article  ADS  Google Scholar 

  34. R.T. Senger, S. Dag, S. Ciraci, Phys. Rev. Lett. 93, 196807 (2004)

    Article  ADS  Google Scholar 

  35. W. Fa, J. Zhou, J.M. Dong, Y. Kawazoe, J. Chem. Phys. 134, 244504 (2011)

    Article  ADS  Google Scholar 

  36. W. Fa, J.M. Dong, J. Chem. Phys. 128, 244703 (2008)

    Article  ADS  Google Scholar 

  37. J. Bettini, F. Sato, P.Z. Coura, S.O. Dantas, D.S. Galvãom, D. Ugarte, Nat. Nanotechnol. 1, 182 (2006)

    Article  ADS  Google Scholar 

  38. B.L. Wang, S.Y. Yin, G.H. Wang, A. Buldum, J.J. Zhao, Phys. Rev. Lett. 86, 2046 (2001)

    Article  ADS  Google Scholar 

  39. L.C. Ma, J.M. Zhang, K.W. Xu, Physica B 410, 105 (2013)

    Article  ADS  Google Scholar 

  40. E.Z. da Silva, F.D. Novaes, A.J.R. da Silva, A. Fazzio, Phys. Rev. B 69, 115411 (2004)

    Article  ADS  Google Scholar 

  41. G. Rubio-Bollinger, S.R. Bahn, N. Agraït, K.W. Jacobsen, S. Vieira, Phys. Rev. Lett. 87, 026101 (2001)

    Article  ADS  Google Scholar 

  42. T. Nautiyal, S.J Youn, K.S. Kim, Phys. Rev. B 68, 033407 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Cai Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, LC., Ma, L., Lin, XL. et al. First-principles study of the structural and electronic properties of ultrathin silver nanowires. Eur. Phys. J. B 88, 343 (2015). https://doi.org/10.1140/epjb/e2015-60756-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60756-2

Keywords

Navigation