Modern temporal network theory: a colloquium

Abstract

The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it is more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.E.J. Newman, Networks: An Introduction (Oxford University Press, Oxford, 2010)

  2. 2.

    A.L. Barabási, Network Science (Cambridge University Press, Cambridge, 2015)

  3. 3.

    S. Wasserman, K. Faust, Social network analysis: Methods and applications (Cambridge University Press, Cambridge, 1994)

  4. 4.

    L. Lamport, Commun. ACM 21, 558 (1978)

    MATH  Article  Google Scholar 

  5. 5.

    G.B. Mertzios, O. Michail, I. Chatzigiannakis, P.G. Spirakis, in Automata, Languages, and Programming, Lect. Notes Comput. Sci., edited by F.V. Fomin, R. Freivalds, M. Kwiatkowska, D. Peleg (Springer, Berlin, Heidelberg, 2013), Vol. 7966, pp. 657–668

  6. 6.

    O. Michail, P.G. Spirakis, in Mathematical Foundations of Computer Science 2014, Lect. Notes Comput. Sci., edited by E. Csuhaj-Varjú, M. Dietzfelbinger, Z. Ésik (Springer Berlin Heidelberg, 2014), Vol. 8635

  7. 7.

    S. Huang, A.W.C. Fu, R. Liu, Minimum Spanning Trees in Temporal Graphs, in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data SIGMOD ’15 (ACM, New York, 2015), pp. 419–430

  8. 8.

    M. Pósfai, P. Hövel, arXiv:1312.7595 (2013)

  9. 9.

    S. Chen, A. Ilany, B.J. White, M.W. Sanderson, C. Lanzas, PLoS One 10, e0129253 (2015)

    Article  Google Scholar 

  10. 10.

    J.R. Clough, J. Gollings, T.V. Loach, T.S. Evans, J. Complex Netw. 3, 189 (2015)

    MathSciNet  Article  Google Scholar 

  11. 11.

    P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    T. Gross, B. Blasius, J. R. Soc. Interface 5, 259 (2008)

    Article  Google Scholar 

  13. 13.

    V.M. Eguíluz, M.G. Zimmerman, C.J. Cela-Conde, M. San Miguel, Am. J. Sociology 110, 977 (2014)

    Article  Google Scholar 

  14. 14.

    L. Wardil, C. Hauert, Sci. Rep. 4, 05725 (2014)

    ADS  Article  Google Scholar 

  15. 15.

    A. Barrat, C. Cattuto, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 191–216

  16. 16.

    A. Barrat et al., Eur. Phys. J. Special Topics 222, 1295 (2013)

    ADS  Article  Google Scholar 

  17. 17.

    M. Kibanov, M. Atzmueller, C. Scholz, G. Stumme, Sci. China Inf. Sci. 57, 1 (2014)

    Article  Google Scholar 

  18. 18.

    C. Cattuto, M. Quaggiotto, A. Panisson, A. Averbuch, Time-varying Social Networks in a Graph Database: A Neo4J Use Case, in First International Workshop on Graph Data Management Experiences and Systems GRADES ’13 (ACM, New York, USA, 2013), pp. 11:1–11:6

  19. 19.

    A. Panisson, L. Gauvin, A. Barrat, C. Cattuto, Fingerprinting temporal networks of close-range human proximity, in 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 261–266

  20. 20.

    W. van den Broeck, M. Quaggiotto, L. Isella, A. Barrat, C. Cattuto, Leonardo 45, 201 (2012)

    Google Scholar 

  21. 21.

    L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.F. Pinton, W. Van den Broeck, J. Theor. Biol. 271, 166 (2011)

    Article  Google Scholar 

  22. 22.

    P. Vanhems, A. Barrat, C. Cattuto, J.F. Pinton, N. Khanafer, C. Régis, B.a. Kim, B. Comte, N. Voirin, PLoS One 8, e73970 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    N. Voirin et al., Infect. Cont. Hosp. Ep. 36, 254 (2015)

    Article  Google Scholar 

  24. 24.

    T. Takaguchi, M. Nakamura, N. Sato, K. Yano, N. Masuda, Phys. Rev. X 1, 011008 (2011)

    Google Scholar 

  25. 25.

    M. Salathé, M. Kazandjieva, J.W. Lee, P. Levis, M.W. Feldman, J.H. Jones, Proc. Natl. Acad. Sci. USA 107, 22020 (2010)

    ADS  Article  Google Scholar 

  26. 26.

    D.J.A. Toth, M. Leecaster, W.B.P. Pettey, A.V. Gundlapalli, H. Gao, J.J. Rainey, A. Uzicanin, M.H. Samore, J. R. Soc. Interface 12, 20150279 (2015)

    Article  Google Scholar 

  27. 27.

    T. Hornbeck, D. Naylor, A.M. Segre, G. Thomas, T. Herman, P.M. Polgreen, J. Infect. Dis. 206, 1549 (2012)

    Article  Google Scholar 

  28. 28.

    A. Stopczynski, V. Sekara, P. Sapiezynski, A. Cuttone, M.M. Madsen, J.E. Larsen, S. Lehmann, PLoS One 9, e95978 (2014)

    ADS  Article  Google Scholar 

  29. 29.

    V. Sekara, A. Stopczynski, S. Lehmann, arXiv:1506.04704 (2015)

  30. 30.

    A. Stopczynski, P. Sapiezynski, A. Pentland, S. Lehmann, arXiv:1507.01484 (2015)

  31. 31.

    R. Pfitzner, I. Scholtes, A. Garas, C.J. Tessone, F. Schweitzer, Phys. Rev. Lett. 110, 198701 (2013)

    ADS  Article  Google Scholar 

  32. 32.

    I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C.J. Tessone, F. Schweitzer, Nat. Commun. 4, 5024 (2014)

    Article  Google Scholar 

  33. 33.

    Y.Q. Zhang, X. Li, J. Xu, A. Vasilakos, IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 45, 214 (2015)

    Article  Google Scholar 

  34. 34.

    Y. Zhang, L. Wang, Y.Q. Zhang, X. Li, Europhys. Lett. 98, 68002 (2012)

    ADS  Article  Google Scholar 

  35. 35.

    Y.Q. Zhang, X. Li, Chaos 23, 013131 (2013)

    MathSciNet  ADS  Article  Google Scholar 

  36. 36.

    E. Yoneki, P. Hui, J. Crowcroft, in Bio-Inspired Computing and Communication, Lect. Notes Comput. Sci., edited by P. Liò, E. Yoneki, J. Crowcroft, D.C. Verma (Springer, Berlin, Heidelberg, 2008), Vol. 5151, pp. 116–132

  37. 37.

    L. Sun, K.W. Axhausen, D.H. Lee, X. Huang, Proc. Natl. Acad. Sci. USA 110, 13774 (2013)

    ADS  Article  Google Scholar 

  38. 38.

    Y. Kim, K. Lee, N. Shroff, IEEE Trans. Mob. Comput. PP, 1 (2015)

  39. 39.

    F. Liljeros, J. Giesecke, P. Holme, Math. Popul. Stud. 14, 269 (2007)

    MATH  MathSciNet  Article  Google Scholar 

  40. 40.

    A.S. Walker et al., PLoS Med. 9, e1001172 (2012)

    Article  Google Scholar 

  41. 41.

    T. Donker, J. Wallinga, H. Grundmann, PLoS Comput. Biol. 6, e1000715 (2010)

    ADS  Article  Google Scholar 

  42. 42.

    J.J. Potterat, S.Q. Muth, R.B. Rothenberg, H. Zimmerman-Rogers, D.L. Green, J.E. Taylor, M.S. Bonney, H.A. White, Sex. Transm. Infect. 78, i152 (2002)

    Article  Google Scholar 

  43. 43.

    S. Haraldsdottir, S. Gupta, R.M. Anderson, J. Acquir. Immune Defic. Syndr. 5, 374 (1992)

    Google Scholar 

  44. 44.

    L.E.C. Rocha, F. Liljeros, P. Holme, Proc. Natl. Acad. Sci. USA 107, 5706 (2010)

    MATH  ADS  Article  Google Scholar 

  45. 45.

    L.E.C. Rocha, F. Liljeros, P. Holme, PLoS Comput. Biol. 7, 1001109 (2011)

    ADS  Article  Google Scholar 

  46. 46.

    M.C. Gates, M.E.J. Woolhouse, Epidemics 12, 11 (2015)

    Article  Google Scholar 

  47. 47.

    M. Génois, C.L. Vestergaard, C. Cattuto, A. Barrat, Network Science (2014), DOI:10.1017/nws.2015.10, arXiv:1409.7017

  48. 48.

    E. Valdano, C. Poletto, A. Giovannini, D. Palma, L. Savini, V. Colizza, PLoS Comput. Biol. 11, e1004152 (2015)

    ADS  Article  Google Scholar 

  49. 49.

    M. Konschake, H.H.K. Lentz, F.J. Conraths, P. Hövel, T. Selhorst, PLoS One 8, e55223 (2013)

    ADS  Article  Google Scholar 

  50. 50.

    M. Lahiri, T.Y. Berger-Wolf, Structure prediction in temporal networks using frequent subgraphs, in IEEE Symposium on Computational Intelligence and Data Mining, 2007, pp. 35–42

  51. 51.

    R. Sulo, T. Berger-Wolf, R. Grossman, Meaningful Selection of Temporal Resolution for Dynamic Networks, in Proceedings of the Eighth Workshop on Mining and Learning with Graphs (MGL), 2010, pp. 127–136

  52. 52.

    M.C. Crofoot, D.I. Rubenstein, A.S. Maiya, T.Y. Berger-Wolf, Am. J. Primatol. 73, 821 (2011)

    Article  Google Scholar 

  53. 53.

    D. Charbonneau, B. Blonder, A. Dornhaus, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 217–244

  54. 54.

    I. Psorakis, S.J. Roberts, I. Rezek, B.C. Sheldon, J. R. Soc. Interface 9, 3055 (2012)

    Article  Google Scholar 

  55. 55.

    J. Saramäki, E. Moro, Eur. Phys. J. B 88, 164 (2015)

    ADS  Article  Google Scholar 

  56. 56.

    M.X. Li, V. Palchykov, Z.Q. Jiang, K. Kaski, J. Kertész, S. Miccichè, M. Tumminello, W.X. Zhou, R.N. Mantegna, New J. Phys. 16, 083038 (2014)

    ADS  Article  Google Scholar 

  57. 57.

    G. Krings, M. Karsai, S. Bernhardsson, V.D. Blondel, J. Saramäki, EPJ Data Sci. 1, 4 (2012)

    Article  Google Scholar 

  58. 58.

    M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, J. Saramäki, M. Karsai, J. Stat. Mech: Theory Exp. 2012, P03005 (2012)

    Article  Google Scholar 

  59. 59.

    M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.L. Barabási, J. Saramäki, Phys. Rev. E 83, 025102 (2011)

    ADS  Article  Google Scholar 

  60. 60.

    L. Kovanen, K. Kaski, J. Kertész, J. Saramäki, Proc. Natl. Acad. Sci. USA 110, 18070 (2013)

    ADS  Article  Google Scholar 

  61. 61.

    G. Miritello, R. Lara, E. Moro, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 175–190

  62. 62.

    G. Miritello, R. Lara, M. Cebrian, E. Moro, Sci. Rep. 3, 1950 (2013)

    ADS  Article  Google Scholar 

  63. 63.

    G. Miritello, E. Moro, R. Lara, Phys. Rev. E 83, 045102 (2011)

    ADS  Article  Google Scholar 

  64. 64.

    Z.Q. Jiang, W.J. Xie, M.X. Li, B. Podobnik, W.X. Zhou, H.E. Stanley, Proc. Natl. Acad. Sci. USA 110, 1600 (2013)

    ADS  Article  Google Scholar 

  65. 65.

    H. Ebel, L.I. Mielsch, S. Bornholdt, Phys. Rev. E 66, 035103 (2002)

    ADS  Article  Google Scholar 

  66. 66.

    J.P. Eckmann, E. Moses, D. Sergi, Proc. Natl. Acad. Sci. USA 101, 14333 (2004)

    MATH  MathSciNet  ADS  Article  Google Scholar 

  67. 67.

    A. Ferraz Costa, Y. Yamaguchi, A. Juci Machado Traina, C. Traina, Jr., C. Faloutsos, RSC: Mining and Modeling Temporal Activity in Social Media, in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD ’15 (ACM, New York, 2015), pp. 269–278

  68. 68.

    D.M. Romero, B. Meeder, J. Kleinberg, Differences in the Mechanics of Information Diffusion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter, in Proceedings of the 20th International Conference on World Wide Web WWW ’11 (ACM, New York, 2011), pp. 695–704

  69. 69.

    C. Sanlí, R. Lambiotte, arXiv:1508.00540 (2015)

  70. 70.

    A.L. Barabási, Nature 435, 207 (2005)

    ADS  Article  Google Scholar 

  71. 71.

    P. Holme, C.R. Edling, F. Liljeros, Soc. Networks 26, 155 (2004)

    Article  Google Scholar 

  72. 72.

    F. Karimi, V.C. Ramenzoni, P. Holme, Physica A 414, 263 (2014)

    ADS  Article  Google Scholar 

  73. 73.

    A. Villani, A. Frigessi, F. Liljeros, M.K. Nordvik, B.F. de Blasio, PLoS One 7, e39717 (2012)

    ADS  Article  Google Scholar 

  74. 74.

    A.Z. Jacobs, S.F. Way, J. Ugander, A. Clauset, Assembling the facebook: Using heterogeneity to understand online social network assembly, in Proceedings of the ACM Web Science Conference, 2015

  75. 75.

    J. Mathiesen, L. Angheluta, P.T.H. Ahlgren, M.H. Jensen, Proc. Natl. Acad. Sci. USA 110, 17259 (2013)

    ADS  Article  Google Scholar 

  76. 76.

    R. Kikas, M. Dumas, M. Karsai, Social Network Analysis and Mining 3, 1393 (2013)

    Article  Google Scholar 

  77. 77.

    A. Moinet, M. Starnini, R. Pastor-Satorras, Phys. Rev. Lett. 114, 108701 (2015)

    ADS  Article  Google Scholar 

  78. 78.

    M.E.J. Newman, Phys. Rev. E 64, 025102 (2001)

    ADS  Article  Google Scholar 

  79. 79.

    B. Karrer, M.E.J. Newman, Phys. Rev. E 80, 046110 (2009)

    ADS  Article  Google Scholar 

  80. 80.

    Z.X. Wu, P. Holme, Phys. Rev. E 80, 037101 (2009)

    ADS  Article  Google Scholar 

  81. 81.

    M. Rosvall, A.V. Esquivel, A. Lancichinetti, J.D. West, R. Lambiotte, Nat. Commun. 5, 4630 (2014)

    ADS  Article  Google Scholar 

  82. 82.

    G. Petri, P. Expert, Phys. Rev. E 90, 022813 (2014)

    ADS  Article  Google Scholar 

  83. 83.

    D. Kondor, M. Pósfai, I. Csabai, G. Vattay, PLoS One 9, e86197 (2014)

    ADS  Article  Google Scholar 

  84. 84.

    B. Zhao, W. Wang, G. Xue, N. Yuan, Q. Tian, in Advances in Swarm and Computational Intelligence, Lect. Notes Comput. Sci., edited by Y. Tan, Y. Shi, F. Buarque, A. Gelbukh, S. Das, A. Engelbrecht (Springer International Publishing, 2015), Vol. 9141, pp. 63–70

  85. 85.

    U. Redmond, P. Cunningham, Temporal Subgraph Isomorphism, in Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining ASONAM ’13 (ACM, New York, 2013), pp. 1451–1452

  86. 86.

    X. Zhang, S. Shao, H.E. Stanley, S. Havlin, Europhys. Lett. 108, 58001 (2014)

    ADS  Article  Google Scholar 

  87. 87.

    X. Zhang, L. Feng, R.Q. Zhu, H.E. Stanley (2015), submitted to Eur. Phys. J. B

  88. 88.

    M. Popović, H. Štefančić, B. Sluban, P. Kralj Novak, M. Grčar, I. Mozetič, M. Puliga, V. Zlatić, PLoS One 9, e99515 (2014)

    ADS  Article  Google Scholar 

  89. 89.

    M. Catanzaro, M. Buchanan, Nat. Phys. 9, 121 (2013)

    Article  Google Scholar 

  90. 90.

    The Complex Networks of Economic Interactions, edited by A. Namatame, T. Kaizouji, Y. Aruka (Springer, Berlin, 2006)

  91. 91.

    H.J. Park, K. Friston, Science 342, 1238411 (2013)

    Article  Google Scholar 

  92. 92.

    O. Sporns, Dialogues Clin. Neurosci. 15, 247 (2013)

    Google Scholar 

  93. 93.

    A. Baronchelli, R. Ferrer i Cancho, R. Pastor-Satorras, N. Chater, M.H. Christiansen, Trends Cogn. Sci. 17, 348 (2013)

    Article  Google Scholar 

  94. 94.

    D.S. Bassett, N.F. Wymbs, M.P. Rombach, M.A. Porter, P.J. Mucha, S.T. Grafton, PLoS Comput. Biol. 9, e1003171 (2013)

    ADS  Article  Google Scholar 

  95. 95.

    D.S. Bassett, M. Yang, N.F. Wymbs, S.T. Grafton, Nat. Neurosci. 18, 744 (2015)

    Article  Google Scholar 

  96. 96.

    A.V. Mantzaris, D.S. Bassett, N.F. Wymbs, E. Estrada, M.A. Porter, P.J. Mucha, S.T. Grafton, D.J. Higham, J. Complex Networks 1, 83 (2013)

    Article  Google Scholar 

  97. 97.

    P. Kaluza, A. Kölzsch, M.T. Gastner, B. Blasius, J. R. Soc. Interface 7, 1093 (2010)

    Article  Google Scholar 

  98. 98.

    P. Borgnat, C. Robardet, P. Abry, P. Flandrin, J.B. Rouquier, N. Tremblay, in Dynamics On and Of Complex Networks, edited by A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly, B. Mitra (Birkhäuser, Berlin, 2013), Vol. 2

  99. 99.

    N.C. Banks, D.R. Paini, K.L. Bayliss, M. Hodda, Ecol. Lett. 18, 188 (2015)

    Article  Google Scholar 

  100. 100.

    F. Kuhn, N. Lynch, R. Oshman, Distributed Computation in Dynamic Networks, in Proceedings of the Forty-second ACM Symposium on Theory of Computing STOC ’10 (ACM, New York, USA, 2010), pp. 513–522

  101. 101.

    O. Michail, arXiv:1503.00278 (2015)

  102. 102.

    M. Pascual, J. Dunne, Ecological Networks: Linking Structure to Dynamics in Food Webs (Oxford University Press, Oxford, 2006)

  103. 103.

    R.V. Solé, J. Bascompte, Self-Organization in Complex Ecosystems (Princeton University Press, Princeton, 2006)

  104. 104.

    C. Rasmussen, Y.L. Dupont, J.B. Mosbacher, K. Trøjelsgaard, J.M. Olesen, PLoS One 8, e81694 (2013)

    ADS  Article  Google Scholar 

  105. 105.

    T.C. Matisziw, A.T. Murray, Landsc. Ecol. 24, 89 (2009)

    Article  Google Scholar 

  106. 106.

    R.J. Hobbs, in Applying Landscape Ecology in Biological Conservation, edited by K.J. Gutzwiller (Springer, New York, 2002), pp. 150–170

  107. 107.

    M.J. Hasenjager, L.A. Dugatkin, in Advances in the Study of Behavior, edited by M. Naguib, H.J. Brockmann, J.C. Mitani, L.W. Simmons, L. Barrett, S. Healy, P.J.B. Slater (Academic Press, 2015), Vol. 47, pp. 39–114

  108. 108.

    B. Blonder, T.W. Wey, A. Dornhaus, R. James, A. Sih, Methods in Ecology and Evolution 3, 958 (2012)

    Article  Google Scholar 

  109. 109.

    L.J. Jensen et al., Nucleic Acids Res. 37, D412 (2009)

    Article  Google Scholar 

  110. 110.

    P. Kharchenko, G.M. Church, D. Vitkup, Mol. Syst. Biol. 1, 2005.0016 (2005)

    Article  Google Scholar 

  111. 111.

    D.M. Gyurkó, D.V. Veres, D. Módos, K. Lenti, T. Korcsmáros, P. Csermely, Semin. Cancer Biol. 23, 262 (2013)

    Article  Google Scholar 

  112. 112.

    I.W. Taylor, R. Linding, D. Warde-Farley, Y. Liu, C. Pesquita, D. Faria, S. Bull, T. Pawson, Q. Morris, J.L. Wrana, Nat. Biotech. 27, 199 (2009)

    Article  Google Scholar 

  113. 113.

    J. Luo, L. Kuang, Comput. Biol. Chem. 52, 34 (2014)

    Article  Google Scholar 

  114. 114.

    K.T.G. Rigbolt, T.A. Prokhorova, V. Akimov, J. Henningsen, P.T. Johansen, I. Kratchmarova, M. Kassem, M. Mann, J.V. Olsen, B. Blagoev, Sci. Signal. 4, rs3 (2011)

    Article  Google Scholar 

  115. 115.

    J. West, G. Bianconi, S. Severini, A.E. Teschendorff, Sci. Rep. 2, 802 (2012)

    ADS  Article  Google Scholar 

  116. 116.

    K. Zhao, M. Karsai, G. Bianconi, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 95–117

  117. 117.

    P. Ronhovde, S. Chakrabarty, D. Hu, M. Sahu, K. Sahu, K. Kelton, N. Mauro, Z. Nussinov, Eur. Phys. J. E 34, 105 (2011)

    Article  Google Scholar 

  118. 118.

    P. Bearman, J. Moody, R. Faris, Complexity 8, 61 (2003)

    Article  Google Scholar 

  119. 119.

    P.V. Beek, Artif. Intell. 58, 728 (1992)

    Google Scholar 

  120. 120.

    V. Batagelj, P. Doreian, A. Ferligoj, N. Kejzar, Understanding Large Temporal Networks and Spatial Networks: Exploration, Pattern Searching, Visualization and Network Evolution (Wiley, Hoboken, 2014)

  121. 121.

    N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Sci. Rep. 4, 4001 (2014)

    Google Scholar 

  122. 122.

    V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, V. Latora, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 15–40

  123. 123.

    S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)

    MathSciNet  ADS  Article  Google Scholar 

  124. 124.

    M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Networks 2, 203 (2014)

    Article  Google Scholar 

  125. 125.

    K.M. Lee, B. Min, K.I. Goh, Eur. Phys. J. B 88, 48 (2015)

    ADS  Article  Google Scholar 

  126. 126.

    A.L. Barabási, R. Albert, Science 286, 509 (1999)

    MathSciNet  ADS  Article  Google Scholar 

  127. 127.

    C. Moore, G. Ghoshal, M.E.J. Newman, Phys. Rev. E 74, 036121 (2006)

    MathSciNet  ADS  Article  Google Scholar 

  128. 128.

    P.N. Krivitsky, M.S. Handcock, J. R. Stat. Soc. Ser. B 76, 29 (2014)

    MathSciNet  Article  Google Scholar 

  129. 129.

    T. Takaguchi, Y. Yano, Y. Yoshida, arXiv:1506.07032 (2015)

  130. 130.

    L. Speidel, T. Takaguchi, N. Masuda, Eur. Phys. J. B 88, 203 (2015)

    ADS  Article  Google Scholar 

  131. 131.

    L. Gauvin, A. Panisson, C. Cattuto, PLoS One 9, e86028 (2014)

    ADS  Article  Google Scholar 

  132. 132.

    L. Gauvin, A. Panisson, A. Barrat, C. Cattuto, arXiv:1501.02758 (2015)

  133. 133.

    E. Valdano, L. Ferreri, C. Poletto, V. Colizza, Phys. Rev. X 5, 021005 (2015)

    Google Scholar 

  134. 134.

    K. Wehmuth, A. Ziviani, E. Fleury, Tech. Rep. 8466, Inria, 2014

  135. 135.

    D.M. Dunlavy, T.G. Kolda, E. Acar, ACM Trans. Knowl. Discov. Data 5, 10:1 (2011)

    Article  Google Scholar 

  136. 136.

    R. Hamon, P. Borgnat, P. Flandrin, C. Robardet, arXiv:1505.03044 (2015)

  137. 137.

    B. Bach, E. Pietriga, J.D. Fekete, Visualizing Dense Dynamic Networks with Matrix Cubes, in IEEE Conference on Information Visualization (Atlanta, 2013)

  138. 138.

    J. Moody, D. McFarland, S. Bender-deMoll, Am. J. Sociology 110, 1206 (2005)

    Article  Google Scholar 

  139. 139.

    P.A. Grabowicz, L.M. Aiello, F. Menczer, EPJ Data Sci. 3, 27 (2014)

    Article  Google Scholar 

  140. 140.

    R. Lambiotte, L. Tabourier, J.C. Delvenne, Eur. Phys. J. B 86, 320 (2013)

    ADS  Article  Google Scholar 

  141. 141.

    P. Holme, PLoS Comput. Biol. 9, e1003142 (2013)

    MathSciNet  ADS  Article  Google Scholar 

  142. 142.

    E. Cheng, J.W. Grossman, M.J. Lipman, Discrete Appl. Math. 128, 317 (2003)

    MATH  MathSciNet  Article  Google Scholar 

  143. 143.

    J. Moody, Soc. Forces 81, 25 (2002)

    Article  Google Scholar 

  144. 144.

    V. Batagelj, S. Praprotnik, arXiv:1505.01569 (2015)

  145. 145.

    J. Whitbeck, M. Dias de Amorim, V. Conan, J.L. Guillaume, Temporal Reachability Graphs, in Proceedings of the 18th Annual International Conference on Mobile Computing and Networking Mobicom ’12 (ACM, New York, 2012), pp. 377–388

  146. 146.

    P. Holme, arXiv:1503.06583 (2015)

  147. 147.

    P. Holme, F. Liljeros, Sci. Rep. 4, 4999 (2014)

    ADS  Article  Google Scholar 

  148. 148.

    T. Takaguchi, N. Sato, K. Yano, N. Masuda, Inferring Directed Static Networks of Influence from Undirected Temporal Networks, in Computer Software and Applications Conference (COMPSAC), 2013 IEEE 37th Annual, pp. 155–156

  149. 149.

    G. Ver Steeg, A. Galstyan, Information Transfer in Social Media, in Proceedings of the 21st International Conference on World Wide Web WWW ’12 (ACM, New York, 2012), pp. 509–518

  150. 150.

    C.H. Watts, R.M. May, Math. Biosci. 108, 89 (1992)

    Article  Google Scholar 

  151. 151.

    M. Kretzschmar, M. Morris, Math. Biosci. 133, 165 (1996)

    MATH  Article  Google Scholar 

  152. 152.

    M. Morris, M. Kretzschmar, Soc. Networks 17, 299 (1995)

    Article  Google Scholar 

  153. 153.

    V. Neiger, C. Crespelle, E. Fleury, On the structure of changes in dynamic contact networks, in Signal Image Technology and Internet Based Systems (SITIS), 2012, pp. 731–738

  154. 154.

    R. Lambiotte, V. Salnikov, M. Rosvall, J. Complex Networks 3, 177 (2015)

    MathSciNet  Article  Google Scholar 

  155. 155.

    L. Speidel, R. Lambiotte, K. Aihara, N. Masuda, Phys. Rev. E 91, 012806 (2015)

    ADS  Article  MathSciNet  Google Scholar 

  156. 156.

    B. Min, K.I. Goh, A. Vazquez, Phys. Rev. E 83, 036102 (2011)

    ADS  Article  Google Scholar 

  157. 157.

    A. Vazquez, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 161–174

  158. 158.

    M. Kivelä, M.A. Porter, arXiv:1412.8388 (2014)

  159. 159.

    P. Holme, Europhys. Lett. 64, 427 (2003)

    ADS  Article  Google Scholar 

  160. 160.

    L. Lü, T. Zhou, Physica A 390, 1150 (2011)

    ADS  Article  Google Scholar 

  161. 161.

    A.V. Mantzaris, D.J. Higham, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 265–282

  162. 162.

    J. Kunegis, M. Blattner, C. Moser, Preferential Attachment in Online Networks: Measurement and Explanations, in Proceedings of the 5th Annual ACM Web Science Conference WebSci ’13 (ACM, New York, 2013), pp. 205–214

  163. 163.

    P. Holme, N. Masuda, PLoS One 10, e0120567 (2015)

    Article  Google Scholar 

  164. 164.

    J.C. Delvenne, R. Lambiotte, L.E.C. Rocha, Nat. Commun. 6, 7366 (2015)

    ADS  Article  Google Scholar 

  165. 165.

    A. Johansen, Physica A 338, 286 (2004)

    ADS  Article  Google Scholar 

  166. 166.

    K.I. Goh, A.L. Barabási, Europhys. Lett. 81, 48002 (2008)

    ADS  Article  Google Scholar 

  167. 167.

    B. Min, K.I. Goh, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 41–64

  168. 168.

    H.H. Jo, M. Karsai, J. Kertész, K. Kaski, New J. Phys. 14, 013055 (2012)

    ADS  Article  Google Scholar 

  169. 169.

    T. Aledavood, E. López, S.G.B. Roberts, F. Reed-Tsochas, E. Moro, R.I.M. Dunbar, J. Saramäki, arXiv:1502.06866 (2015)

  170. 170.

    T. Aledavood, S. Lehmann, J. Saramäki, arXiv:1507.08199 (2015)

  171. 171.

    M. Karsai, K. Kaski, J. Kertész, PLoS One 7, e40612 (2012)

    ADS  Article  Google Scholar 

  172. 172.

    M. Karsai, K. Kaski, A.L. Barabási, J. Kertész, Sci. Rep. 2, 397 (2012)

    ADS  Article  Google Scholar 

  173. 173.

    A. Albano, J.L. Guillaume, S. Heymann, B. Le Grand, A matter of time – intrinsic or extrinsic – for diffusion in evolving complex networks, in IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 2013, pp. 202–206

  174. 174.

    A. Albano, J.L. Guillaume, B. Le Grand, On the use of intrinsic time scale for dynamic community detection and visualization in social networks, in IEEE Eighth International Conference on Research Challenges in Information Science (RCIS), 2014, pp. 1–11

  175. 175.

    J. Saramäki, P. Holme, arXiv:1508.00693 (2015)

  176. 176.

    R.K. Pan, J. Saramäki, Phys. Rev. E 84, 016105 (2011)

    ADS  Article  Google Scholar 

  177. 177.

    P. Holme, Phys. Rev. E 71, 046119 (2005)

    ADS  Article  Google Scholar 

  178. 178.

    S. Bayhan, E. Hyytiä, J. Kangasharju, J. Ott, Analysis of Hop Limit in Opportunistic Networks by Static and Time-Aggregated Graphs, in IEEE International Conference on Communications (ICC’15) (London, 2015)

  179. 179.

    B. Bui Xuan, A. Ferreira, A. Jarry, Int. J. Found. Comput. Sci. 14, 267 (2002)

    MathSciNet  Article  Google Scholar 

  180. 180.

    H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, Y. Xu, Proc. VLDB Endow. 7, 721 (2014)

    Article  Google Scholar 

  181. 181.

    A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, in Ad-hoc, Mobile, and Wireless Networks, Lect. Notes Comput. Sci., edited by H. Frey, X. Li, S. Ruehrup (Springer Berlin Heidelberg, 2011), Vol. 6811, pp. 346–359

  182. 182.

    M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Phys. Rev. E 85, 056115 (2012)

    ADS  Article  Google Scholar 

  183. 183.

    V. Iyer, Q. Liu, S. Dulman, K. Langendoen, Adaptive Online Estimation of Temporal Connectivity in Dynamic Wireless Networks, in IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), 2013, pp. 237–246

  184. 184.

    H. Kim, R. Anderson, Phys. Rev. E 85, 026107 (2012)

    ADS  Article  Google Scholar 

  185. 185.

    V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, V. Latora, Chaos 22, 023101 (2012)

    MathSciNet  ADS  Article  Google Scholar 

  186. 186.

    H. Kim, J. Tang, R. Anderson, C. Mascolo, Comput. Networks 56, 983 (2012)

    Article  Google Scholar 

  187. 187.

    R. Michalski, T. Kajdanowicz, P. Bródka, P. Kazienko, New Generat. Comput. 32, 213 (2014)

    Article  Google Scholar 

  188. 188.

    Habiba, C. Tantipathananandh, T.Y. Berger-Wolf, Tech. Rep. 2007-19, DIMACS (2007)

  189. 189.

    J. Tang, I. Leontiadis, S. Scellato, V. Nicosia, C. Mascolo, M. Musolesi, V. Latora, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 135–159

  190. 190.

    E. Ser-Giacomi, R. Vasile, E. Hernández-García, C. López, Phys. Rev. E 92, 012818 (2015)

    ADS  Article  Google Scholar 

  191. 191.

    A. Alsayed, D.J. Higham, Chaos Solitons Fractals 72, 35 (2015)

    MathSciNet  ADS  Article  Google Scholar 

  192. 192.

    M.J. Williams, M. Musolesi, arXiv:1506.00627 (2015)

  193. 193.

    T. Takaguchi, N. Sato, K. Yano, N. Masuda, New J. Phys. 14, 093003 (2012)

    ADS  Article  Google Scholar 

  194. 194.

    L.E.C. Rocha, N. Masuda, New J. Phys. 16, 063023 (2014)

    MathSciNet  ADS  Article  Google Scholar 

  195. 195.

    P. Grindrod, M.C. Parsons, D.J. Higham, E. Estrada, Phys. Rev. E 83, 046120 (2011)

    ADS  Article  Google Scholar 

  196. 196.

    E. Estrada, Phys. Rev. E 88, 042811 (2013)

    ADS  Article  Google Scholar 

  197. 197.

    A.V. Mantzaris, D.J. Higham, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 283–294

  198. 198.

    T. Rogers, J. Complex Networks 3, 113 (2015)

    Article  Google Scholar 

  199. 199.

    S. Praprotnik, V. Batagelj, Ars Math. Contemp. 11, 11 (2015)

    Google Scholar 

  200. 200.

    D. Taylor, S.A. Myers, A. Clauset, M.A. Porter, P.J. Mucha, arXiv:1507.01266 (2015)

  201. 201.

    Y. Pan, X. Li, PLoS One 9, e94998 (2014)

    ADS  Article  Google Scholar 

  202. 202.

    Y.Q. Zhang, X. Li, Characterizing Large-scale Population’s Indoor Spatio-temporal Interactive Behaviors, in Proceedings of the ACM SIGKDD International Workshop on Urban Computing UrbComp ’12 (ACM, New York, 2012), pp. 25–32

  203. 203.

    G. Ghoshal, P. Holme, Physica A 364, 603 (2006)

    ADS  Article  Google Scholar 

  204. 204.

    P. Grindrod, D.J. Higham, Proc. R. Soc. London Ser. A 470, 20130835 (2014)

    MathSciNet  ADS  Article  Google Scholar 

  205. 205.

    P. Grindrod, D.J. Higham, SIAM Rev. 55, 118 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  206. 206.

    P. Laflin, A.V. Mantzaris, P. Grindrod, F. Ainley, A. Otley, D.J. Higham, Social Network Analysis and Mining 3, 1311 (2013)

    Article  Google Scholar 

  207. 207.

    S. Motegi, N. Masuda, Sci. Rep. 2, 904 (2012)

    ADS  Article  Google Scholar 

  208. 208.

    Y.Y. Liu, J.J. Slotine, A.L. Barabási, Nature 473, 167 (2011)

    ADS  Article  Google Scholar 

  209. 209.

    M. Pósfai, P. Hövel, New J. Phys. 16, 123055 (2014)

    MathSciNet  Article  Google Scholar 

  210. 210.

    A. Cimatti, L. Hunsberger, A. Micheli, R. Posenato, M. Roveri, Sound and Complete Algorithms for Checking the Dynamic Controllability of Temporal Networks with Uncertainty, Disjunction and Observation, in 21st International Symposium on Temporal Representation and Reasoning (TIME), 2014, pp. 27–36

  211. 211.

    Y. Pan, X. Li, Towards a graphic tool of structural controllability of temporal networks, in IEEE International Symposium on Circuits and Systems (ISCAS), 2014, pp. 1784–1787

  212. 212.

    S. Scellato, I. Leontiadis, C. Mascolo, P. Basu, M. Zafer, IEEE Trans. Mob. Comput. 12, 105 (2013)

    Article  Google Scholar 

  213. 213.

    L. Chi, C. Yang (2015), to appear in Nonlinear Theory and its Applications

  214. 214.

    J.I. Perotti, H.H. Jo, P. Holme, J. Saramäki, arXiv:1411.5553 (2014)

  215. 215.

    A. Clauset, N. Eagle, Persistence and Periodicity in a Dynamic Proximity Network, in DIMACS Workshop on Computational Methods for Dynamic Interaction Networks (DIMACS, Piscataway, 2007)

  216. 216.

    M. Lahiri, T.Y. Berger-Wolf, Mining Periodic Behavior in Dynamic Social Networks, in Eighth IEEE International Conference on Data Mining, 2008

  217. 217.

    Q. Zhao, Y. Tian, Q. He, N. Oliver, R. Jin, W.C. Lee, Communication motifs: A tool to characterize social communications, in Proceedings of the 19th ACM international conference on Information and knowledge management, 2010, pp. 1645–1648

  218. 218.

    L. Kovanen, M. Karsai, K. Kaski, J. Kertész, J. Saramäki, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 119–133

  219. 219.

    J. Cui, Y.Q. Zhang, X. Li, On the clustering coefficients of temporal networks and epidemic dynamics, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2299–2302

  220. 220.

    L.E.C. Rocha, V.D. Blondel, Phys. Rev. E 87, 042814 (2013)

    ADS  Article  Google Scholar 

  221. 221.

    Y. Hulovatyy, H. Chen, T. Milenković, Bioinformatics 31, i171 (2015)

    Article  Google Scholar 

  222. 222.

    S. Fortunato, Phys. Rep. 486, 75 (2010)

    MathSciNet  ADS  Article  Google Scholar 

  223. 223.

    X. Zhang, T. Martin, M.E.J. Newman, Phys. Rev. E 91, 032803 (2015)

    ADS  Article  Google Scholar 

  224. 224.

    M.P. Rombach, M.A. Porter, J.H. Fowler, P.J. Mucha, SIAM J. Appl. Math. 74, 167 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  225. 225.

    A. Grönlund, P. Holme, Phys. Rev. E 70, 036108 (2004)

    ADS  Article  Google Scholar 

  226. 226.

    C. Tantipathananandh, T.Y. Berger-Wolf, D. Kempe, A framework for community identification in dynamical social networks, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp. 717–726

  227. 227.

    J. Kauffman, A. Kittas, L. Bennett, S. Tsoka, PLoS One 9, e101357 (2014)

    ADS  Article  Google Scholar 

  228. 228.

    F. Folino, C. Pizzuti, IEEE Trans. Knowl. Data Eng. 26, 1838 (2014)

    Article  Google Scholar 

  229. 229.

    P.J. Mucha, T. Richardson, K. Macon, M.A. Porter, J.P. Onnela, Science 328, 876 (2010)

    MATH  MathSciNet  ADS  Article  Google Scholar 

  230. 230.

    A.K. Pietilänen, C. Diot, Dissemination in Opportunistic Social Networks: The Role of Temporal Communities, in Proceedings of the Thirteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing MobiHoc ’12 (ACM, New York, 2012), pp. 165–174

  231. 231.

    J. He, D. Chen, Physica A 429, 87 (2015)

    ADS  Article  Google Scholar 

  232. 232.

    M. Rosvall, C.T. Bergstrom, PLoS One 5, e8694 (2010)

    ADS  Article  Google Scholar 

  233. 233.

    M. Bazzi, M.A. Porter, S. Williams, M. McDonald, D.J. Fenn, S.D. Howison, arXiv:1501.00040 (2015)

  234. 234.

    Y. Chen, V. Kawadia, R. Urgaonkar, arXiv:1303.7226 (2013)

  235. 235.

    J. Stehlé et al., PLoS One 6, e23176 (2011)

    ADS  Article  Google Scholar 

  236. 236.

    C. Matias, V. Miele, arXiv:1506.07464 (2015)

  237. 237.

    F. Cai, L. Min, Z. Deqing, Q. Shuyan, H. Lansheng, J.J. Park, Int. J. Distrib. Sens. Netw. 2013, 281565 (2013)

    Google Scholar 

  238. 238.

    T.P. Peixoto, arXiv:1504.02381 (2015)

  239. 239.

    L. Peel, A. Clauset, Detecting Change Points in the Large-Scale Structure of Evolving Networks (2015), https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9485

  240. 240.

    F. Liljeros, C.R. Edling, L.A.N. Amaral, Microbes Infect. 5, 189 (2003)

    Article  Google Scholar 

  241. 241.

    P. Holme, Proc. IEEE 102, 1922 (2014)

    Article  Google Scholar 

  242. 242.

    J.C. Delvenne, S.N. Yaliraki, M. Barahona, Proc. Natl. Acad. Sci. USA 107, 12755 (2010)

    ADS  Article  Google Scholar 

  243. 243.

    B. Ribeiro, N. Perra, A. Baronchelli, Sci. Rep. 3, 3006 (2013)

    ADS  Article  Google Scholar 

  244. 244.

    R.S. Caceres, T. Berger-Wolf, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 65–94

  245. 245.

    B. Fish, R.S. Caceres, arXiv:1504.06667 (2015)

  246. 246.

    H.H.K. Lentz, T. Selhorst, I.M. Sokolov, Phys. Rev. Lett. 110, 118701 (2013)

    ADS  Article  Google Scholar 

  247. 247.

    A. Cardillo, G. Petri, V. Nicosia, R. Sinatra, J. Gómez-Gardeñes, V. Latora, Phys. Rev. E 90, 052825 (2014)

    ADS  Article  Google Scholar 

  248. 248.

    V.P. Backlund, J. Saramäki, R.K. Pan, Phys. Rev. E 89, 062815 (2014)

    ADS  Article  Google Scholar 

  249. 249.

    U. Redmond, M. Harrigan, P. Cunningham, Identifying Time-Respecting Subgraphs in Temporal Networks, in Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, edited by M. Atzmueller, A. Hotho (ACM, New York, 2012), pp. 51–63

  250. 250.

    N. Antulov-Fantulin, A. Lančić, T. Šmuc, H. Štefančić, M. Šikić, Phys. Rev. Lett. 114, 248701 (2015)

    ADS  Article  Google Scholar 

  251. 251.

    R. Milo, R. Kashtan, S. Itzkovitz, M.E.J. Newman, U. Alon, arXiv:cond-mat/0312028 (2015)

  252. 252.

    P. Bajardi, A. Barrat, F. Natale, L. Savini, V. Colizza, PLoS One 6, e19869 (2011)

    ADS  Article  Google Scholar 

  253. 253.

    T. Donker, J. Wallinga, H. Grundmann, J. Hosp. Infect. 86, 34 (2014)

    Article  Google Scholar 

  254. 254.

    M. Ogura, V.M. Preciado, arXiv:1507.07017 (2015)

  255. 255.

    N. Fujiwara, Nonlinear Theory and Its Applications, IEICE 6, 295 (2015)

    Google Scholar 

  256. 256.

    P. Flocchini, B. Mans, N. Santoro, Theor. Comput. Sci. 469, 53 (2013)

    MATH  MathSciNet  Article  Google Scholar 

  257. 257.

    Y. Dhote, N. Mishra, S. Sharma, Survey and analysis of temporal link prediction in online social networks, in International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2013, pp. 1178–1183

  258. 258.

    M. Génois, C.L. Vestergaard, J. Fournet, A. Panisson, I. Bonmarin, A. Barrat, arXiv:1503.04066 (2015)

  259. 259.

    L.E.C. Rocha, V.D. Blondel, PLoS Comput. Biol. 9, e1002974 (2013)

    MathSciNet  ADS  Article  Google Scholar 

  260. 260.

    N. Perra, A. Baronchelli, D. Mocanu, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 109, 238701 (2012)

    ADS  Article  Google Scholar 

  261. 261.

    M. Karsai, N. Perra, A. Vespignani, Sci. Rep. 4, 4001 (2014)

    ADS  Article  Google Scholar 

  262. 262.

    S.Y. Liu, A. Baronchelli, N. Perra, Phys. Rev. E 87, 032805 (2013)

    ADS  Article  Google Scholar 

  263. 263.

    S. Liu, N. Perra, M. Karsai, A. Vespignani, Phys. Rev. Lett. 112, 118702 (2014)

    ADS  Article  Google Scholar 

  264. 264.

    M. Starnini, R. Pastor-Satorras, Phys. Rev. E 89, 032807 (2014)

    ADS  Article  Google Scholar 

  265. 265.

    K. Sun, A. Baronchelli, N. Perra, arXiv:1404.1006 (2014)

  266. 266.

    D. Han, M. Sun, D. Li, Physica A 432, 354 (2015)

    MathSciNet  ADS  Article  Google Scholar 

  267. 267.

    M. Starnini, R. Pastor-Satorras, Phys. Rev. E 87, 062807 (2013)

    ADS  Article  Google Scholar 

  268. 268.

    H.H. Jo, J.I. Perotti, K. Kaski, J. Kertész, Phys. Rev. X 4, 011041 (2014)

    Google Scholar 

  269. 269.

    G. Laurent, J. Saramäki, M. Karsai, arXiv:1506.00393 (2015)

  270. 270.

    A. Sunny, B. Kotnis, J. Kuri, Phys. Rev. E 92, 022811 (2015)

    ADS  Article  Google Scholar 

  271. 271.

    M. Starnini, A. Baronchelli, R. Pastor-Satorras, Phys. Rev. Lett. 110, 168701 (2013)

    ADS  Article  Google Scholar 

  272. 272.

    Y.Q. Zhang, X. Li, D. Liang, J. Cui, IEEE Commun. Lett. 19, 1225 (2015)

    Article  Google Scholar 

  273. 273.

    A.V. Mantzaris, D.J. Higham, Eur. J. Appl. Math. 23, 659 (2012)

    MATH  MathSciNet  Article  Google Scholar 

  274. 274.

    V. Raghavan, G.V. Steeg, A. Galstyan, A.G. Tartakovsky, IEEE Trans. Comput. Social Syst. 1, 89 (2014)

    Article  Google Scholar 

  275. 275.

    T.Y. Hsu, A.D. Kshemkalyani, M. Shen, Modeling User Interactions in Social Communication Networks with Variable Social Vector Clocks, in 28th International Conference on Advanced Information Networking and Applications Workshops (WAINA), 2014, pp. 96–101

  276. 276.

    C.L. Vestergaard, M. Génois, A. Barrat, Phys. Rev. E 90, 042805 (2014)

    ADS  Article  Google Scholar 

  277. 277.

    N. Masuda, T. Takaguchi, N. Sato, K. Yano, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 245–264

  278. 278.

    Y.S. Cho, A. Galstyan, P.J. Brantingham, G. Tita, Discrete and Continuous Dynamical Systems – Series B 19, 1335 (2014)

    MATH  MathSciNet  Article  Google Scholar 

  279. 279.

    J.R. Zipkin, F.P. Schoenberg, K. Coronges, A.L. Bertozzi (2014), http://www.math.ucla.edu/˜bertozzi/papers/EJAM-Zipkin-2014.pdf

  280. 280.

    E.R. Colman, D. Vukadinović Greetham, Phys. Rev. E 92, 012817 (2015)

    ADS  Article  Google Scholar 

  281. 281.

    F. Karimi, P. Holme, Physica A 392, 3476 (2013)

    ADS  Article  Google Scholar 

  282. 282.

    M.A. Porter, J.P. Gleeson, arXiv:1403.7663 (2014)

  283. 283.

    A. Sousa da Mata, R. Pastor-Satorras, Eur. Phys. J. B 88, 12 (2015)

    ADS  Article  Google Scholar 

  284. 284.

    D. ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems (Cambridge University Press, Cambridge, 2000)

  285. 285.

    V. Ramiro, E. Lochin, P. Senac, T. Rakotoarivelo, Temporal random walk as a lightweight communication infrastructure for opportunistic networks, in IEEE 15th International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2014, pp. 1–6

  286. 286.

    M. Gueuning, J. Delvenne, R. Lambiotte, arXiv:1508.04006 (2015)

  287. 287.

    A. Barrat, B. Fernandez, K.K. Lin, L.S. Young, Phys. Rev. Lett. 110, 158702 (2013)

    ADS  Article  Google Scholar 

  288. 288.

    T. Hoffmann, M.A. Porter, R. Lambiotte, Phys. Rev. E 86, 046102 (2012)

    ADS  Article  Google Scholar 

  289. 289.

    T. Hoffmann, M.A. Porter, R. Lambiotte, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 295–313

  290. 290.

    N. Masuda, K. Klemm, V.M. Eguíluz, Phys. Rev. Lett. 111, 188701 (2013)

    ADS  Article  Google Scholar 

  291. 291.

    N. Masuda, P. Holme, F1000Prime Rep. 5, 6 (2015)

    Google Scholar 

  292. 292.

    H.W. Hethcote, SIAM Rev. 42, 599 (2000)

    MATH  MathSciNet  ADS  Article  Google Scholar 

  293. 293.

    M.J. Keeling, K.T.D. Eames, J. R. Soc. Interface 2, 295 (2005)

    Article  Google Scholar 

  294. 294.

    P. Holme, Journal of Logistical Engineering University 30, 1 (2014)

    Google Scholar 

  295. 295.

    A.L. Lloyd, Theor. Popul Biol. 60, 59 (2001)

    Article  Google Scholar 

  296. 296.

    C.L. Vestergaard, M. Génois, arXiv:1504.01298 (2015)

  297. 297.

    C.S. Riolo, J.S. Koopman, J.S. Chick, J. Urban Health 78, 446 (2001)

    Article  Google Scholar 

  298. 298.

    N.H. Fefferman, K.L. Ng, Phys. Rev. E 76, 031919 (2007)

    MathSciNet  ADS  Article  Google Scholar 

  299. 299.

    A. Bramson, B. Vandermarliere, J. Complex Networks (2015), in press, DOI:10.1093/comnet/cnv009

  300. 300.

    Y. Zhu, D. Li, W. Guo, F. Zhang, Math. Probl. Eng. 2014, 409510 (2014)

    Google Scholar 

  301. 301.

    D.X. Horváth, J. Kertész, New J. Phys. 16, 073037 (2014)

    Article  Google Scholar 

  302. 302.

    A. Machens, F. Gesualdo, C. Rizzo, A.E. Tozzi, A. Barrat, C. Cattuto, BMC Infect. Dis. 13, 185 (2013)

    Article  Google Scholar 

  303. 303.

    G. Ren, X. Wang, Chaos 24, 023116 (2014)

    ADS  Article  MathSciNet  Google Scholar 

  304. 304.

    L.E.C. Rocha, A. Decuyper, V.D. Blondel, in Dynamics On and Of Complex Networks, Modeling and Simulation in Science, Engineering and Technology, edited by A. Mukherjee, M. Choudhury, F. Peruani, N. Ganguly, B. Mitra (Springer, New York, 2013), Vol. 2, pp. 301–314

  305. 305.

    Y.Q. Zhang, X. Li, Europhys. Lett. 108, 28006 (2014)

    ADS  Article  Google Scholar 

  306. 306.

    S. Lee, L.E.C. Rocha, F. Liljeros, P. Holme, PLoS One 7, e36439 (2012)

    ADS  Article  Google Scholar 

  307. 307.

    M. Starnini, A. Machens, C. Cattuto, A. Barrat, R. Pastor-Satorras, J. Theor. Biol. 337, 89 (2013)

    MathSciNet  Article  Google Scholar 

  308. 308.

    S. Osawa, T. Murata, in Complex Networks VI, Studies in Computational Intelligence, edited by G. Mangioni, F. Simini, S.M. Uzzo, D. Wang (Springer International Publishing, 2015), Vol. 597, pp. 91–98

  309. 309.

    Habiba, Y. Yu, T.Y. Berger-Wolf, J. Saia, in Advances in Social Network Mining and Analysis, Lect. Notes Comput. Sci., edited by L. Giles, M. Smith, J. Yen, H. Zhang (Springer, Berlin, Heidelberg, 2010), Vol. 5498, pp. 55–76

  310. 310.

    M.C. Vernon, M.J. Keeling, Proc. R. Soc. London Ser. B 276, 469 (2009)

    Article  Google Scholar 

  311. 311.

    S. Schärrer, S. Widgren, H. Schwermer, A. Lindberg, B. Vidondo, J. Zinsstag, M. Reist, BMC Vet. Res. 11, 149 (2015)

    Article  Google Scholar 

  312. 312.

    A. Cori, P.Y. Boëlle, G. Thomas, G.M. Leung, A.J. Valleron, PLoS Comput. Biol. 9, e1000471 (2009)

    Article  Google Scholar 

  313. 313.

    G.D. Martino, S. Spina, Physica A 438, 634 (2015)

    MathSciNet  Article  ADS  Google Scholar 

  314. 314.

    A. Guille, H. Hacid, C. Favre, D.A. Zighed, SIGMOD Rec. 42, 17 (2013)

    Article  Google Scholar 

  315. 315.

    F. Karimi, P. Holme, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 315–329

  316. 316.

    D.J. Watts, Proc. Natl. Acad. Sci. USA 99, 5766 (2002)

    MATH  MathSciNet  ADS  Article  Google Scholar 

  317. 317.

    T. Takaguchi, N. Masuda, P. Holme, PLoS One 8, e68629 (2013)

    ADS  Article  Google Scholar 

  318. 318.

    K. Hoppe, G.J. Rodgers, Phys. Rev. E 88, 042804 (2013)

    ADS  Article  Google Scholar 

  319. 319.

    J. Fernández-Gracia, V.M. Eguíluz, M.S. Miguel, in Temporal Networks, edited by P. Holme, J. Saramäki (Springer, Berlin, 2013), pp. 331–352

  320. 320.

    R. Nishi, N. Masuda, Europhys. Lett. 107, 48003 (2014)

    ADS  Article  Google Scholar 

  321. 321.

    R. Durrett, Lecture Notes on Particle Systems and Percolation (Wadsworth, Belmont, 1988)

  322. 322.

    L. Gauvin, A. Panisson, C. Cattuto, A. Barrat, Sci. Rep. 3, 3099 (2013)

    ADS  Article  Google Scholar 

  323. 323.

    R. Albert, H. Jeong, A.L. Barabási, Nature 406, 378 (2000)

    ADS  Article  Google Scholar 

  324. 324.

    S. Trajanovski, S. Scellato, I. Leontiadis, Phys. Rev. E 85, 066105 (2012)

    ADS  Article  Google Scholar 

  325. 325.

    S. Sur, N. Ganguly, A. Mukherjee, Physica A 420, 98 (2015)

    ADS  Article  Google Scholar 

  326. 326.

    A. Buscarino, M. Frasca, L.V. Gambuzza, P. Hövel, Phys. Rev. E 91, 022817 (2015)

    ADS  Article  Google Scholar 

  327. 327.

    S.H. Lee, S. Lee, S.W. Son, P. Holme, Phys. Rev. E 85, 027202 (2012)

    ADS  Article  Google Scholar 

  328. 328.

    V. Kohar, P. Ji, A. Choudhary, S. Sinha, J. Kurths, Phys. Rev. E 90, 022812 (2014)

    ADS  Article  Google Scholar 

  329. 329.

    D.S. Bassett, N.F. Wymbs, M.A. Porter, P.J. Mucha, S.T. Grafton, Chaos 24, 013112 (2014)

    ADS  Article  MathSciNet  Google Scholar 

  330. 330.

    G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)

    MathSciNet  ADS  Article  Google Scholar 

  331. 331.

    B. George, S. Kim, Spatio-temporal Networks: An Introduction, SpringerBriefs in Computer Science (Springer, New York, 2013)

  332. 332.

    M. Sarzynska, E.A. Leicht, G. Chowell, M.A. Porter, arXiv:1407.6297 (2014)

  333. 333.

    F. Zaidi, C. Muelder, A. Sallaberry, in Encyclopedia of Social Network Analysis and Mining, edited by R. Alhajj, J. Rokne (Springer, Berlin, Heidelberg, 2014), pp. 37–48

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petter Holme.

Additional information

Contribution to the Topical Issue “Temporal Network Theory and Applications”, edited by Petter Holme.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Holme, P. Modern temporal network theory: a colloquium. Eur. Phys. J. B 88, 234 (2015). https://doi.org/10.1140/epjb/e2015-60657-4

Download citation

Keywords

  • Static Network
  • Link Prediction
  • Temporal Network
  • Reachability Graph
  • Interevent Time