Skip to main content
Log in

Model of human collective decision-making in complex environments

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A continuous-time Markov process is proposed to analyze how a group of humans solves a complex task, consisting in the search of the optimal set of decisions on a fitness landscape. Individuals change their opinions driven by two different forces: (i) the self-interest, which pushes them to increase their own fitness values, and (ii) the social interactions, which push individuals to reduce the diversity of their opinions in order to reach consensus. Results show that the performance of the group is strongly affected by the strength of social interactions and by the level of knowledge of the individuals. Increasing the strength of social interactions improves the performance of the team. However, too strong social interactions slow down the search of the optimal solution and worsen the performance of the group. In particular, we find that the threshold value of the social interaction strength, which leads to the emergence of a superior intelligence of the group, is just the critical threshold at which the consensus among the members sets in. We also prove that a moderate level of knowledge is already enough to guarantee high performance of the group in making decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Conradt, T.J. Roper, Nature 421, 155 (2003)

    Article  ADS  Google Scholar 

  2. I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin, Nature 433, 513 (2005)

    Article  ADS  Google Scholar 

  3. M.J.B. Krieger, J.-B. Billeter, L. Keller, Nature 406, 992 (2000)

    Article  ADS  Google Scholar 

  4. M. Rubenstein, A. Cornejo, R. Nagpal, Science 345, 795 (2014)

    Article  ADS  Google Scholar 

  5. J. Werfel, K. Petersen, R. Nagpal, Science 343, 754 (2014)

    Article  ADS  Google Scholar 

  6. M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm Intell. 7, 1 (2013)

    Article  Google Scholar 

  7. C.H. Lee, A. Lucas, Phys. Rev. E 90, 052804 (2014)

    Article  ADS  Google Scholar 

  8. C.D. Brummitt, S. Chatterjee, P.S. Dey, D. Sivakoff, Ann. Appl. Probab. 25, 2013 (2015)

    Article  MathSciNet  Google Scholar 

  9. R.J.G. Clément, S. Krause, N. von Engelhardt, J.J. Faria, J. Krause, R.H.J.M. Kurvers, PLoS ONE 8, e77943 (2013)

    Article  ADS  Google Scholar 

  10. S. Galam, Physica A 238, 66 (1997)

    Article  ADS  Google Scholar 

  11. S. Galam, A.C.R. Martins, Phys. Rev. E 91, 012108 (2015)

    Article  ADS  Google Scholar 

  12. I.D. Couzin, Trends Cogn. Sci. 13, 36 (2009)

    Article  Google Scholar 

  13. D.J.T. Sumpter, S.C. Pratt, Phil. Trans. R. Soc. B 364, 743 (2009)

    Article  Google Scholar 

  14. A.J.W. Ward, D.J.T. Sumpter, I.D. Couzin, Proc. Natl. Acad. Sci. 105, 6948 (2008)

    Article  ADS  Google Scholar 

  15. S. Arganda, A. Pérez-Escudero, G.G. de Polavieja, Proc. Natl. Acad. Sci. 109, 20508 (2012)

    Article  ADS  Google Scholar 

  16. A.J.W. Ward, J.E. Herbert-Read, D.J.T. Sumpter, J. Krause, Proc. Natl. Acad. Sci. 108, 2312 (2011)

    Article  ADS  Google Scholar 

  17. A. Pérez-Escudero, G.G. de Polavieja, PLoS Comput. Biol. 7, e1002282 (2011)

    Article  Google Scholar 

  18. D.J. Watts, Proc. Natl. Acad. Sci. 99, 5766 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. M. Turalska, M. Lukovic, B.J. West, P. Grigolini, Phys. Rev. E 80, 021110 (2009)

    Article  ADS  Google Scholar 

  20. Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 2470 (2013)

    ADS  Google Scholar 

  21. Z. Wang, A. Szolnoki, M. Perc, Sci. Rep. 3, 1183 (2013)

    ADS  Google Scholar 

  22. E. Bonabeau, M. Dorigo, G. Theraulaz, Nature 406, 39 (2000)

    Article  ADS  Google Scholar 

  23. S. Garnier, J. Gautrais, G. Theraulaz, Swarm Intell. 1, 3 (2007)

    Article  Google Scholar 

  24. F. Vanni, M. Luković, P. Grigolini, Phys. Rev. Lett. 107, 078103 (2011)

    Article  ADS  Google Scholar 

  25. D. Easley, J. Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World (Cambridge University Press, 2010)

  26. D.A. Levinthal, Manag. Sci. 43, 934 (1997)

    Article  MATH  Google Scholar 

  27. R. Katila, G. Ahuja, Acad. Manag. J. 45, 1183 (2002)

    Article  Google Scholar 

  28. C. Loch, J. Mihm, A. Huchzermeier, Concurrent Engineering 11, 187 (2003)

    Article  Google Scholar 

  29. S. Billinger, N. Stieglitz, T.R. Schumacher, Organization Sci. 25, 93 (2014)

    Article  Google Scholar 

  30. M. Turalska, B.J. West, Phys. Rev. E 90, 052815 (2014)

    Article  ADS  Google Scholar 

  31. L. Conradt, Interface Focus 2, 226 (2012)

    Article  Google Scholar 

  32. P.J. DiMaggio, W.W. Powell, Am. Sociol. Rev. 48, 147 (1983)

    Article  Google Scholar 

  33. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

    Article  ADS  Google Scholar 

  34. R.J. Glauber, J. Math. Phys. 4, 294 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. S. Kauffman, S. Levin, J. Theor. Biol. 128, 11 (1987)

    Article  MathSciNet  Google Scholar 

  36. S. Kauffman, E. Weinberger, J. Theor. Biol. 141, 211 (1989)

    Article  Google Scholar 

  37. D. Sornette, Rep. Prog. Phys. 77, 062001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  38. W. Weidlich, Br. J. Math. Stat. Psychol. 24, 251 (1971)

    Article  MATH  Google Scholar 

  39. E. Ising, Z. Phys. 31, 253 (1925)

    Article  ADS  Google Scholar 

  40. S.G. Brush, Rev. Mod. Phys. 39, 883 (1967)

    Article  ADS  Google Scholar 

  41. W. Weidlich, Phys. Rep. 204, 1 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. F. Schweitzer, Brownian Agents and Active Particles, Collective Dynamics in the Natural and Social Sciences, Springer Series in Synergetics − Springer Complexity (Springer, Berlin, Heidelberg, New York, 2007)

  43. D. Gruènbaum, Evol. Ecol. 12, 503 (1998)

    Article  Google Scholar 

  44. P.R. Laughlin, E.C. Hatch, J.S. Silver, L. Boh, J. Pers. Soc. Psychol. 90, 644 (2006)

    Article  Google Scholar 

  45. P.R. Laughlin, M.L. Zander, E.M. Knievel, T.K. Tan, J. Pers. Soc. Psychol. 85, 684 (2003)

    Article  Google Scholar 

  46. J.J. Faria, E.A. Codling, J.R.G. Dyer, F. Trillmich, J. Krause, Anim. Behav. 78, 587 (2009)

    Article  Google Scholar 

  47. M. Dorigo, V. Maniezzo, A. Colorni, IEEE Trans. Syst. Man. Cybernet. B 26, 1 (1996)

    Article  Google Scholar 

  48. M. Dorigo, L.M. Gambardella, BioSystems 43, 73 (1997)

    Article  Google Scholar 

  49. J. Kennedy, R. Eberhart, in Proceedings of IEEE International Conference on Neural Networks, 1995, Vol. 4, pp. 1942−1948

  50. D. Karaboga, B. Basturk, J. Global Optim. 39, 459 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. X. Li, Z. Shao, J. Qian, Eng. Theor. Practice 22, 32 (2002)

    Google Scholar 

  52. E.D. Weinberger, Santa Fe Institute working paper: 1996-02-003, http://www.santafe.edu/media/workingpapers/96-02-003.pdf (1996)

  53. M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M.A. Porter, S. Gómez, A. Arenas, Phys. Rev. X 3, 041022 (2013)

    Google Scholar 

  54. K.M. Lee, B. Min, K. Goh, Eur. Phys. J. B 88, 48 (2015)

    Article  ADS  Google Scholar 

  55. S. Boccaletti, G. Bianconi, R. Criado, C.I. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  56. Z. Wang, L. Wang, A. Szolnoki, M. Perc, Eur. Phys. J. B 88, 1 (2015)

    ADS  Google Scholar 

  57. M. Kivelä, A. Arenas, M. Barthelemy, J.P. Gleeson, Y. Moreno, M.A. Porter, J. Complex Networks 2, 203 (2014)

    Article  Google Scholar 

  58. D.T. Gillespie, J. Comput. Phys. 22, 403 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  59. D.T. Gillespie, J. Phys. Chem. 81, 2340 (1977)

    Article  Google Scholar 

  60. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995)

    Article  ADS  Google Scholar 

  61. T. Vicseka, A. Zafeirisa, Phys. Rep. 517, 71 (2012)

    Article  ADS  Google Scholar 

  62. L. Barnett, J.T. Lizier, M. Harré, A.K. Seth, T. Bossomaier, Phys. Rev. Lett. 111, 177203 (2013)

    Article  ADS  Google Scholar 

  63. O. Kinouchi, M. Copelli, Nat. Phys. 2, 348 (2006)

    Article  Google Scholar 

  64. T. Mora, W. Bialek, J. Stat. Phys. 144, 268 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Carbone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carbone, G., Giannoccaro, I. Model of human collective decision-making in complex environments. Eur. Phys. J. B 88, 339 (2015). https://doi.org/10.1140/epjb/e2015-60609-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60609-0

Keywords

Navigation