Skip to main content
Log in

Empirical study on structural properties in temporal networks under different time scales

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Many network analyzing methods are usually based on static networks. However, temporal networks should be considered so as to investigate real complex systems deeply since some dynamics on these systems cannot be described by static networks accurately. In this paper, four structural properties in temporal networks are empirically studied, including degree, clustering coefficient, adjacent correlation, and connected component. Three real temporal networks with different time scales are analyzed in this paper, including short message, telephone, and router networks. Moreover, structural properties of these temporal networks are compared with that of corresponding static aggregation networks in the whole time window. Some essential differences of structural properties between temporal and static networks are achieved through empirical analysis. Finally, the effect of structural properties on spreading dynamics under different time scales is investigated. Some interesting results such as turning point of structure evolving time scale corresponding to certain spreading dynamics time scale from the point of view of infected scale are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.-L. Barabási, Nature 435, 207 (2005)

    Article  ADS  Google Scholar 

  2. T. Zhou, Z.-D. Zhao, Z. Yang, C. Zhou, Europhys. Lett. 97, 18006 (2012)

    Article  ADS  Google Scholar 

  3. L. Hou, X. Pan, Q. Guo, J.-G. Liu, Sci. Rep. 4, 6560 (2014)

    Article  ADS  Google Scholar 

  4. K.-I. Goh, A.-L. Barabási, Europhys. Lett. 81, 48002 (2008)

    Article  ADS  Google Scholar 

  5. E.R. Colman, D. Vukadinović Greetham, Phys. Rev. E 92, 012817 (2015)

    Article  ADS  Google Scholar 

  6. P.C. Pinto, P. Thiran, M. Vetterli, Phys. Rev. Lett. 109, 068702 (2012)

    Article  ADS  Google Scholar 

  7. Z. Shen, W.-X. Wang, Y. Fan, Z. Di, Y.-C Lai, Nat. Commun. 5, 4323 (2014)

    ADS  Google Scholar 

  8. N. Lathia, S. Hailes, L. Capra, X. Amatriain, in Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 19 July, 2010, Geneva, Switzerland, pp. 210−217

  9. N.N. Liu, L. He, M. Zhao, ACM T. Intel. Syst. Tec. 4, 15 (2013)

    Google Scholar 

  10. Z. Zhang, H. Liu, Appl. Intell. 43, 695 (2015)

    Article  Google Scholar 

  11. F.D. Malliaros, M. Vazirgiannis, Phys. Rep. 533, 95 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)

    Article  ADS  Google Scholar 

  13. P. Holme, J. Saramäki, in Temporal Networks (Springer, Verlag Berlin, Heidelberg, 2013) pp. 1–14

  14. R.K. Pan, J. Saramäki, Phys. Rev. E 84, 016105 (2011)

    Article  ADS  Google Scholar 

  15. V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, V. Latora, Chaos 22, 023101 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Phys. Rev. E 85, 056115 (2012)

    Article  ADS  Google Scholar 

  17. J. He, D. Chen, Physica A 429, 87 (2015)

    Article  ADS  Google Scholar 

  18. D. Deng, G.-N. Wang, J. Zhu, H. Gao, D. Chen, Comput. Sci. 41, 185 (2014) (in Chinese)

    Google Scholar 

  19. B. Min, K.-I. Goh, A. Vazquez, Phys. Rev. E 83, 036102 (2011)

    Article  ADS  Google Scholar 

  20. M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.-L. Barabási, J. Saramäki, Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  21. L.E.C. Rocha, V.D. Blondel, PLoS Comput. Biol. 9, e1002974 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. P. Holme, N. Masuda, PLoS One 10, e0120567 (2015)

    Article  Google Scholar 

  23. P. Holme, F. Liljeros, Sci. Rep. 4, 4999 (2014)

    Article  ADS  Google Scholar 

  24. J.I. Perotti, H.-H. Jo, P. Holme, J. Saramäki, arXiv:1411.5553v1 (2014)

  25. H. Kim, R. Anderson, Phys. Rev. E 85, 026107 (2012)

    Article  ADS  Google Scholar 

  26. Y. Zhang, L. Wang, Y.-Q. Zhang, X. Li, Europhys. Lett. 98, 68002 (2012)

    Article  ADS  Google Scholar 

  27. R.M. Anderson, R.M. May, B. Anderson, Infections diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1992)

  28. P. Holme, Eur. Phys. J. B 88, 234 (2015)

    Article  ADS  Google Scholar 

  29. G. Krings, M. Karsai, S. Bernhardsson, V.D. Blondel, J. Saramäki, Eur. Phys. J. Data Sci. 1, 4 (2012)

    Google Scholar 

  30. I. Psorakis, S.J. Roberts, I. Rezek, B.C. Sheldon, J. R. Soc. Interface 9, 3055 (2012)

    Article  Google Scholar 

  31. V. Sekara, A. Stopczynski, S. Lehmann, arXiv:1506.04704 (2015)

  32. M. Génois, C.L. Vestergaard, C. Cattuto, A. Barrat, Netw. Sci. 3, 326 (2015)

    Article  Google Scholar 

  33. Z.-D. Zhao, H. Xia, M.-S. Shang, T. Zhou, Chin. Phys. Lett. 28, 068901 (2011)

    Article  ADS  Google Scholar 

  34. P. Holme, Phys. Rev. E 71, 046119 (2005)

    Article  ADS  Google Scholar 

  35. D. Smilkov, L. Kocarev, Phys. Rev. E 85, 016114 (2012)

    Article  ADS  Google Scholar 

  36. P. Basu, A. Bar-Noy, R. Ramanathan, M.P. Johnson, arXiv:1012.0260 (2010)

  37. J. Tang, S. Scellato, M. Musolesi, C. Mascolo, V. Latora, Phys. Rev. E 81, 055101 (2010)

    Article  ADS  Google Scholar 

  38. A. Clauset, N. Eagle, arXiv:1211.7343 (2012)

  39. J. Leskovec, J. Kleinberg, C. Faloutsos, in Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 21–24, 2005, Chicago, USA

  40. D.-B. Chen, H. Gao, L. Lü, T. Zhou, PLoS One 8, e77455 (2013)

    Article  ADS  Google Scholar 

  41. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  42. V. Marceau, P.-A. Noël, L. Hébert-Dufresne, A. Allard, L.J. Dubé, Phys. Rev. E 82, 036116 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duanbing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D. Empirical study on structural properties in temporal networks under different time scales. Eur. Phys. J. B 88, 320 (2015). https://doi.org/10.1140/epjb/e2015-60604-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60604-5

Keywords

Navigation