Imperfect spreading on temporal networks

  • Martin Gueuning
  • Jean-Charles Delvenne
  • Renaud Lambiotte
Regular Article
Part of the following topical collections:
  1. Topical issue: Temporal Network Theory and Applications


We study spreading on networks where the contact dynamics between the nodes is governed by a random process and where the inter-contact time distribution may differ from the exponential. We consider a process of imperfect spreading, where transmission is successful with a determined probability at each contact. We first derive an expression for the inter-success time distribution, determining the speed of the propagation, and then focus on a problem related to epidemic spreading, by estimating the epidemic threshold in a system where nodes remain infectious during a finite, random period of time. Finally, we discuss the implications of our work to design an efficient strategy to enhance spreading on temporal networks.


Poisson Process Reproduction Number Basic Reproduction Number Temporal Network Epidemic Spreading 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.E.J. Newman, Networks: an introduction (Oxford University Press, New-York, 2010)Google Scholar
  2. 2.
    P. Holme, J. Saramäki, Phys Rep. 519, 97 (2012)CrossRefADSGoogle Scholar
  3. 3.
    A.L Barabási, Nature 435, 204 (2005)CrossRefGoogle Scholar
  4. 4.
    S. Liu, A. Baronchelli, N. Perra, Phys. Rev. E 87, 032805 (2013)CrossRefADSGoogle Scholar
  5. 5.
    N. Masuda, K. Klemm, V. Eguíluz, Phys. Rev. Lett. 111, 188701 (2013)CrossRefADSGoogle Scholar
  6. 6.
    M. Starnini, A. Baronchelli, A. Barrat, R. Pastor-Satorras, Phys. Rev. E 85, 056115 (2012)CrossRefADSGoogle Scholar
  7. 7.
    R. Lambiotte, L. Tabourier, J.-C. Delvenne, Eur. Phys. J. B 86, 320 (2013)CrossRefADSGoogle Scholar
  8. 8.
    T. Takaguchi, N. Masuda, P. Holme, PloS One 8, e68629 (2013)CrossRefADSGoogle Scholar
  9. 9.
    M. Karsai, M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, A.L. Barabási, J. Saramäki, Phys. Rev. E 83, 025102(R) (2011)CrossRefADSGoogle Scholar
  10. 10.
    I. Scholtes, N. Wider, R. Pfitzner, A. Garas, C. Tessone, F. Schweitzer, Nat. Commun. 5, 5024 (2014)CrossRefADSGoogle Scholar
  11. 11.
    R. Lambiotte, V. Salnikov, M. Rosvall, J. Complex Networks 3, 177 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Karsai, K. Kimmo, A.L. Barabasi, J. Kertesz, Sci. Rep. 2, 397 (2014)Google Scholar
  13. 13.
    H. Wearing, P. Rohani, M. Keeling, PLoS Medicine 2, 621 (2005)Google Scholar
  14. 14.
    M. Kivelä, R.K. Pan, K. Kaski, J. Kertész, J. Saramäki, M. Karsai, J. Stat. Mech 03, 05 (2012)Google Scholar
  15. 15.
    P. Holme, N. Masuda, PloS One 10, e0120567 (2015)CrossRefGoogle Scholar
  16. 16.
    J.L. Iribarren, E. Moro, Phys. Rev. E 84, 046116 (2011)CrossRefADSGoogle Scholar
  17. 17.
    Z. Dezsö, E. Almaas, A. Lukács, B. Rácz, I. Szakadát, A.-L. Barabási, Phys. Rev. E 73, 066132 (2006)CrossRefADSGoogle Scholar
  18. 18.
    J. Kleinberg, Data Mining and Knowledge Discovery 7, 373 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    J.-C. Delvenne, R. Lambiotte, L.E.C. Rocha, Nat. Commun. (2015)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Martin Gueuning
    • 1
  • Jean-Charles Delvenne
    • 2
  • Renaud Lambiotte
    • 1
  1. 1.naXysUniversity of NamurNamurBelgium
  2. 2.ICTEAM and COREUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations