A model for Rayleigh-Bénard magnetoconvection

  • Arnab Basak
  • Krishna Kumar
Regular Article

Abstract

A model for three-dimensional Rayleigh-Bénard convection in low-Prandtl-number fluids near onset with rigid horizontal boundaries in the presence of a uniform vertical magnetic field is constructed and analyzed in detail. The kinetic energy K, the convective entropy Φ and the convective heat flux (Nu − 1) show scaling behaviour with ε = r − 1 near onset of convection, where r is the reduced Rayleigh number. The model is also used to investigate various magneto-convective structures close to the onset. Straight rolls, which appear at the primary instability, become unstable with increase in r and bifurcate to three-dimensional structures. The straight rolls become periodically varying wavy rolls or quasiperiodically varying structures in time with increase in r depending on the values of Prandtl number Pr. They become irregular in time, with increase in r. These standing wave solutions bifurcate first to periodic and then to quasiperiodic traveling wave solutions, as r is raised further. The variations of the critical Rayleigh number Raos and the frequency ωos at the onset of the secondary instability with Pr are also studied for different values of Chandrasekhar’s number Q.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    Y. Nakagawa, Proc. R. Soc. Lond. A 240, 108 (1957) CrossRefADSGoogle Scholar
  2. 2.
    Y. Nakagawa, Proc. R. Soc. Lond. A 249, 138 (1959) CrossRefADSGoogle Scholar
  3. 3.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, London, 1961) Google Scholar
  4. 4.
    S. Fauve, C. Laroche, A. Libchaber, J. Phys. Lett. 42, L455 (1981) CrossRefGoogle Scholar
  5. 5.
    E. Knobloch, N.O. Weiss, L.N. Da Costa, J. Fluid Mech. 113, 153 (1981) MATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    M.R.E. Proctor, N.O. Weiss, Rep. Prog. Phys. 45, 1317 (1982) CrossRefADSGoogle Scholar
  7. 7.
    F.H. Busse, R.M. Clever, Phys. Fluids 25, 931 (1982)MATHCrossRefADSGoogle Scholar
  8. 8.
    S. Fauve, C. Laroche, A. Libchaber, J. Phys. Lett. 45, L101 (1984) CrossRefGoogle Scholar
  9. 9.
    S. Fauve, C. Laroche, A. Libchaber, B. Perrin, Phys. Rev. Lett. 52, 1774 (1984) CrossRefADSGoogle Scholar
  10. 10.
    K. Kumar, J.K. Bhattacharjee, K. Banerjee, Phys. Fluids 29, 4032 (1986) CrossRefADSGoogle Scholar
  11. 11.
    M. Meneguzzi, C. Sulem, P.L. Sulem, O. Thual, J. Fluid Mech. 182, 169 (1987) MATHCrossRefADSGoogle Scholar
  12. 12.
    R.M. Clever, F.H. Busse, J. Fluid Mech. 201, 507 (1989) MATHCrossRefADSGoogle Scholar
  13. 13.
    F.H. Busse, R.M. Clever, Phys. Rev. A 40, 1954 (1989) CrossRefADSGoogle Scholar
  14. 14.
    G. Glatzmaier, R. Coe, L. Hongre, P. Roberts, Nature 401, 885 (1999) CrossRefADSGoogle Scholar
  15. 15.
    K. Julien, E. Knobloch, S. Tobias, J. Fluid Mech. 410, 285 (2000) MATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    S. Cioni, S. Chaumat, J. Sommeria, Phys. Rev. E 62, R4520 (2000) CrossRefADSGoogle Scholar
  17. 17.
    J.M. Aurnou, P.L. Olson, J. Fluid Mech. 430, 283 (2001) MATHCrossRefADSGoogle Scholar
  18. 18.
    U. Burr, U. Müller, J. Fluid Mech. 453, 345 (2002) MATHCrossRefADSGoogle Scholar
  19. 19.
    B.C. Houchens, L.M. Witkowski, J.S. Walker, J. Fluid Mech. 469, 189 (2002) MATHMathSciNetCrossRefADSGoogle Scholar
  20. 20.
    F. Cattaneo, T. Emonet, N. Weiss, ApJ 588, 1183 (2003) CrossRefADSGoogle Scholar
  21. 21.
    A.M. Rucklidge, M.R.E. Proctor, J. Prat, Geo. Astr. Fluid Dyn. 100, 121 (2006) MATHMathSciNetCrossRefADSGoogle Scholar
  22. 22.
    J.H.P. Dawes, J. Fluid Mech. 570, 385 (2007) MATHMathSciNetCrossRefADSGoogle Scholar
  23. 23.
    H. Varshney, M.F. Baig, J. Turbulence 9, 1 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    O. Podvigina, Phys. Rev. E 81, 056322 (2010) MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    T. Yanagisawa, Y. Yamagishi, Y. Hamano, Y. Tasaka, Y. Takeda, Phys. Rev. E 83, 036307 (2011) CrossRefADSGoogle Scholar
  26. 26.
    P. Pal, K. Kumar, Eur. Phys. J. B 85, 201 (2012)CrossRefADSGoogle Scholar
  27. 27.
    A. Basak, R. Raveendran, K. Kumar, Phys. Rev. E 90, 033002 (2014) CrossRefADSGoogle Scholar
  28. 28.
    J. Niederländer, M. Lücke, M. Kamps, Z. Phys. B 82, 135 (1991)CrossRefADSGoogle Scholar
  29. 29.
    K.B. Hermiz, P.N. Guzdar, J.M. Finn, Phys. Rev. E 51, 325 (1995)CrossRefADSGoogle Scholar
  30. 30.
    R.M. Clever, F.H. Busse, J. Fluid Mech. 102, 61 (1981)MATHCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Arnab Basak
    • 1
  • Krishna Kumar
    • 1
  1. 1.Department of PhysicsIndian Institute of TechnologyKharagpurIndia

Personalised recommendations