The stability and interfacial properties of functionalized silica nanoparticles dispersed in brine studied by molecular dynamics

  • Lucas S. de Lara
  • Vagner A. Rigo
  • Caetano R. Miranda
Regular Article

Abstract

The charge accumulation and surface tension of overall neutral functionalized silica nanoparticles (NPs) dispersed in brine (NaCl and CaCl2) were studied using large scale fully atomistic molecular dynamics. Sulphonic (SA) and ethylene-glycol (EG) functional groups have been incorporated in the NP surface respectively, covering both the hydrophobic and hydrophilic characters. For the latter, groups with one (EG) and two (PEG2) monomers were considered. The ion distribution in electrolyte aqueous solution and its accumulation around NPs were monitored for different salt concentrations (from 0.05 up to 1 wt%), and temperature (300 and 350 K) at 1 atm. At certain conditions, the ion accumulation surrounding the overall neutral NPs leads to a formation of electrical double layers (EDL). Compared with the monovalent ions (NaCl), the accumulation of divalent ions (CaCl2) was found to be more pronounced and the thickness of the EDL around the NPs is more compact. According to the functional group attached, the EDL width also reduces going from EG, to PEG2, to SA. Our simulations suggest that the EDL formation, its narrowing, the large variation of the interface tension, followed by a steep increase in ion mobility are conditions which may precede instability of functionalized NPs dispersion in brine.

Keywords

Solid State and Materials 

References

  1. 1.
    Y.-S. Lin, K.R. Hurley, C.L. Haynes, J. Phys. Chem. Lett. 3, 364 (2012)CrossRefGoogle Scholar
  2. 2.
    M. Xie, H. Shi, K. Ma, H. Shen, B. Li, S. Shen, X. Wang, Y. Jin, J. Colloid Interface Sci. 395, 306 (2013)CrossRefGoogle Scholar
  3. 3.
    J.E. Lee, N. Lee, T. Kim, J. Kim, T. Hyeon, Acc. Chem. Res. 44, 893 (2011)CrossRefGoogle Scholar
  4. 4.
    H. Ogihara, J. Okagaki, T. Saji, Langmuir 27, 9069 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Ogihara, J. Xie, J. Okagaki, T. Saji, Langmuir 28, 4605 (2012)CrossRefGoogle Scholar
  6. 6.
    H. Ogihara, J. Xie, T. Saji, J. Colloid Interface Sci. 437, 24 (2015)CrossRefGoogle Scholar
  7. 7.
    G.Y. Bae, B.G. Min, Y.G. Jeong, S.C. Lee, J.H. Jang, G.H. Koo, J. Colloid Interface Sci. 337, 170 (2009)CrossRefGoogle Scholar
  8. 8.
    Y. Zhao, Y. Tang, X. Wang, T. Lin, Appl. Sur. Sci. 256, 6736 (2010)CrossRefADSGoogle Scholar
  9. 9.
    L. Gao, J. He, J. Colloid Interface Sci. 396, 152 (2013)CrossRefGoogle Scholar
  10. 10.
    Z. Guo, W. Liu, B.-L. Su, J. Colloid Interface Sci. 353, 335 (2011)CrossRefGoogle Scholar
  11. 11.
    X. Zhang, Y. Guo, Z. Zhang, P. Zhang, Appl. Sur. Sci. 258, 7907 (2012)CrossRefADSGoogle Scholar
  12. 12.
    D. Jiao, S. Zheng, Y. Wang, R. Guan, B. Cao, Appl. Sur. Sci. 257, 5720 (2011)CrossRefADSGoogle Scholar
  13. 13.
    C.O. Metin, L.W. Lake, C.R. Miranda, Q.P. Nguyen, J. Nanopart. Res. 13, 839 (2011)CrossRefGoogle Scholar
  14. 14.
    H.-Q. Sun, L. Zhang, Z.-Q. Li, L. Zhang, L. Lou, S. Zhao, Soft Matter 7, 7601 (2011)CrossRefADSGoogle Scholar
  15. 15.
    C.O. Metin, J.R. Baran Jr, Q.P. Nguyen, J. Nanopart. Res. 14, 1246 (2012)CrossRefGoogle Scholar
  16. 16.
    L.S. Lara, M.F. Michelon, C.O. Metin, Q.P. Nguyen, C.R. Miranda, J. Chem. Phys. 136, 164702 (2012)CrossRefADSGoogle Scholar
  17. 17.
    P. McElfresh, M. Wood, D. Ector, in 2012 SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 12–14 June, 2012 Google Scholar
  18. 18.
    G. Cao, in Nanostructures and Nanomaterials, 1st edn. (Imperial College Press, London, 2004)Google Scholar
  19. 19.
    J.M. Pettibone, D.M. Cwiertny, M. Scherer, V.H. Grassian, Langmuir 24, 6659 (2008)CrossRefGoogle Scholar
  20. 20.
    I.A. Mudunkotuwa, V.H. Grassian, J. Am. Chem. Soc. 132, 14986 (2010)CrossRefGoogle Scholar
  21. 21.
    S. Jenkins, S.R. Kirk, M. Persson, J. Carlen, Z. Abbas, J. Colloid Interface Sci. 339, 351 (2009)CrossRefGoogle Scholar
  22. 22.
    S. Jenkins, S.R. Kirk, M. Persson, J. Carlen, Z. Abbas, J. Chem. Phys. 128, 164711 (2008)CrossRefADSGoogle Scholar
  23. 23.
    S. Jenkins, S.R. Kirk, M. Persson, J. Carlen, Z. Abbas, J. Chem. Phys. 127, 224711 (2007)CrossRefADSGoogle Scholar
  24. 24.
    A. Dukhin, S. Dukhin, P. Goetz, Langmuir 21, 9990 (2005)CrossRefGoogle Scholar
  25. 25.
    L.S. de Lara, V.A. Rigo, M.F. Michelon, C.O. Metin, Q.P. Nguyen, C.R. Miranda, J. Phys.: Condens. Matter 27, 325101 (2015)Google Scholar
  26. 26.
    J. Lyklema, Adv. Colloid Interface Sci. 147-148, 205 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Mancui, E. Ruckenstein, Adv. Colloid Interface Sci. 105, 63 (2003)CrossRefGoogle Scholar
  28. 28.
    M. Mancui, E. Ruckenstein, Adv. Colloid Interface Sci. 112, 109 (2004)CrossRefGoogle Scholar
  29. 29.
    J.M.D. Lane, A.E. Ismail, M. Chandross, C.D. Lorenz, G.S. Grest, Phys. Rev. E 79, 050501(R) (2009)CrossRefADSGoogle Scholar
  30. 30.
    V.A. Rigo, L.S. de Lara, C.R. Miranda, Appl. Sur. Sci. 292, 742 (2014)CrossRefADSGoogle Scholar
  31. 31.
    H.R. Sondjaja, T.A. Hatton, K.C. Tam, Langmuir 24, 8501 (2008)CrossRefGoogle Scholar
  32. 32.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)MATHCrossRefADSGoogle Scholar
  33. 33.
    E.R. Cruz-Chu, A. Aksimentiev, K. Schulten, J. Phys. Chem. 110, 21497 (2006)CrossRefGoogle Scholar
  34. 34.
    H.A. Lorentz, Ann. Phys. 248, 127 (1881)CrossRefGoogle Scholar
  35. 35.
    D. Berthelot, C.R. Acad. Sci. 126, 1703 (1898)Google Scholar
  36. 36.
    J. Alejandre, G.A. Chapela, F. Bresme, J.-P. Hansen, J. Chem. Phys. 130, 174505 (2009)CrossRefADSGoogle Scholar
  37. 37.
    S. Gavryushov, J. Phys. Chem. B 111, 5264 (2007)CrossRefGoogle Scholar
  38. 38.
    D. Makimura, C. Metin, T. Kabashima, T. Matsuoka, Q.P. Nguyen, C.R. Miranda, J. Mater. Sci. 45, 5084 (2010)CrossRefADSGoogle Scholar
  39. 39.
    A.P. Thompson, S.J. Plimpton, W. Mattson, J. Chem. Phys. 131, 154107 (2009)CrossRefADSGoogle Scholar
  40. 40.
    R.W. Hockney, J.W Eastwood, Computer Simulations Using Particles (Adam Hilger, Bristol, New York, 1989)Google Scholar
  41. 41.
    S. Nosé, J. Chem. Phys. 81, 511 (1984)CrossRefADSGoogle Scholar
  42. 42.
    W.G. Hoover, Phys. Rev. A 31, 1695 (1985)CrossRefADSGoogle Scholar
  43. 43.
    H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)CrossRefADSGoogle Scholar
  44. 44.
    R. Qiao, N.R. Aluru, Phys. Rev. Lett. 92, 198301 (2004)CrossRefADSGoogle Scholar
  45. 45.
    I.V. Schweigert, K.E.J. Lehtinen, M.J. Carrier, M.R. Zachariah, Phys. Rev. B 65, 235410 (2002)CrossRefADSGoogle Scholar
  46. 46.
    T. Hawa, M.R. Zachariah, J. Chem. Phys. 121, 9043 (2004)CrossRefADSGoogle Scholar
  47. 47.
    S.M. Thompson, K.E. Gubbins, J.P.R.B. Walton, R.A.R. Chantry, J.S. Rawlinson, J. Chem. Phys. 81, 530 (1984)CrossRefADSGoogle Scholar
  48. 48.
    C.D. Lorenz, A. Travesset, Phys. Rev. E 75, 061202 (2007)CrossRefADSGoogle Scholar
  49. 49.
    C.O. Metin, Ph.D. thesis, University of Texas, Austin, 2012Google Scholar
  50. 50.
    C.R. Miranda, L.S. de Lara, B.C. Tonetto, in Proceedings of the SPE International Oilfield Nanotechnology Conference, Noordwijk, Netherlands, June 12–14, 2012 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Lucas S. de Lara
    • 1
    • 2
  • Vagner A. Rigo
    • 1
    • 3
  • Caetano R. Miranda
    • 1
    • 4
  1. 1.Centro de Ciências Naturais e Humanas (CCNH)Universidade Federal do ABC (UFABC)Santo AndréBrazil
  2. 2.Universidade Estadual de Ponta Grossa (UEPG)Ponta GrossaBrazil
  3. 3.Universidade Tecnológica Federal do Paraná (UTFPR)Cornélio ProcópioBrazil
  4. 4.Instituto de FísicaUniversidade de São Paulo (IF-USP)São PauloBrazil

Personalised recommendations