Skip to main content
Log in

The stability and interfacial properties of functionalized silica nanoparticles dispersed in brine studied by molecular dynamics

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The charge accumulation and surface tension of overall neutral functionalized silica nanoparticles (NPs) dispersed in brine (NaCl and CaCl2) were studied using large scale fully atomistic molecular dynamics. Sulphonic (SA) and ethylene-glycol (EG) functional groups have been incorporated in the NP surface respectively, covering both the hydrophobic and hydrophilic characters. For the latter, groups with one (EG) and two (PEG2) monomers were considered. The ion distribution in electrolyte aqueous solution and its accumulation around NPs were monitored for different salt concentrations (from 0.05 up to 1 wt%), and temperature (300 and 350 K) at 1 atm. At certain conditions, the ion accumulation surrounding the overall neutral NPs leads to a formation of electrical double layers (EDL). Compared with the monovalent ions (NaCl), the accumulation of divalent ions (CaCl2) was found to be more pronounced and the thickness of the EDL around the NPs is more compact. According to the functional group attached, the EDL width also reduces going from EG, to PEG2, to SA. Our simulations suggest that the EDL formation, its narrowing, the large variation of the interface tension, followed by a steep increase in ion mobility are conditions which may precede instability of functionalized NPs dispersion in brine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-S. Lin, K.R. Hurley, C.L. Haynes, J. Phys. Chem. Lett. 3, 364 (2012)

    Article  Google Scholar 

  2. M. Xie, H. Shi, K. Ma, H. Shen, B. Li, S. Shen, X. Wang, Y. Jin, J. Colloid Interface Sci. 395, 306 (2013)

    Article  Google Scholar 

  3. J.E. Lee, N. Lee, T. Kim, J. Kim, T. Hyeon, Acc. Chem. Res. 44, 893 (2011)

    Article  Google Scholar 

  4. H. Ogihara, J. Okagaki, T. Saji, Langmuir 27, 9069 (2012)

    Article  Google Scholar 

  5. H. Ogihara, J. Xie, J. Okagaki, T. Saji, Langmuir 28, 4605 (2012)

    Article  Google Scholar 

  6. H. Ogihara, J. Xie, T. Saji, J. Colloid Interface Sci. 437, 24 (2015)

    Article  Google Scholar 

  7. G.Y. Bae, B.G. Min, Y.G. Jeong, S.C. Lee, J.H. Jang, G.H. Koo, J. Colloid Interface Sci. 337, 170 (2009)

    Article  Google Scholar 

  8. Y. Zhao, Y. Tang, X. Wang, T. Lin, Appl. Sur. Sci. 256, 6736 (2010)

    Article  ADS  Google Scholar 

  9. L. Gao, J. He, J. Colloid Interface Sci. 396, 152 (2013)

    Article  Google Scholar 

  10. Z. Guo, W. Liu, B.-L. Su, J. Colloid Interface Sci. 353, 335 (2011)

    Article  Google Scholar 

  11. X. Zhang, Y. Guo, Z. Zhang, P. Zhang, Appl. Sur. Sci. 258, 7907 (2012)

    Article  ADS  Google Scholar 

  12. D. Jiao, S. Zheng, Y. Wang, R. Guan, B. Cao, Appl. Sur. Sci. 257, 5720 (2011)

    Article  ADS  Google Scholar 

  13. C.O. Metin, L.W. Lake, C.R. Miranda, Q.P. Nguyen, J. Nanopart. Res. 13, 839 (2011)

    Article  Google Scholar 

  14. H.-Q. Sun, L. Zhang, Z.-Q. Li, L. Zhang, L. Lou, S. Zhao, Soft Matter 7, 7601 (2011)

    Article  ADS  Google Scholar 

  15. C.O. Metin, J.R. Baran Jr, Q.P. Nguyen, J. Nanopart. Res. 14, 1246 (2012)

    Article  Google Scholar 

  16. L.S. Lara, M.F. Michelon, C.O. Metin, Q.P. Nguyen, C.R. Miranda, J. Chem. Phys. 136, 164702 (2012)

    Article  ADS  Google Scholar 

  17. P. McElfresh, M. Wood, D. Ector, in 2012 SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 12–14 June, 2012

  18. G. Cao, in Nanostructures and Nanomaterials, 1st edn. (Imperial College Press, London, 2004)

  19. J.M. Pettibone, D.M. Cwiertny, M. Scherer, V.H. Grassian, Langmuir 24, 6659 (2008)

    Article  Google Scholar 

  20. I.A. Mudunkotuwa, V.H. Grassian, J. Am. Chem. Soc. 132, 14986 (2010)

    Article  Google Scholar 

  21. S. Jenkins, S.R. Kirk, M. Persson, J. Carlen, Z. Abbas, J. Colloid Interface Sci. 339, 351 (2009)

    Article  Google Scholar 

  22. S. Jenkins, S.R. Kirk, M. Persson, J. Carlen, Z. Abbas, J. Chem. Phys. 128, 164711 (2008)

    Article  ADS  Google Scholar 

  23. S. Jenkins, S.R. Kirk, M. Persson, J. Carlen, Z. Abbas, J. Chem. Phys. 127, 224711 (2007)

    Article  ADS  Google Scholar 

  24. A. Dukhin, S. Dukhin, P. Goetz, Langmuir 21, 9990 (2005)

    Article  Google Scholar 

  25. L.S. de Lara, V.A. Rigo, M.F. Michelon, C.O. Metin, Q.P. Nguyen, C.R. Miranda, J. Phys.: Condens. Matter 27, 325101 (2015)

    Google Scholar 

  26. J. Lyklema, Adv. Colloid Interface Sci. 147-148, 205 (2009)

    Article  Google Scholar 

  27. M. Mancui, E. Ruckenstein, Adv. Colloid Interface Sci. 105, 63 (2003)

    Article  Google Scholar 

  28. M. Mancui, E. Ruckenstein, Adv. Colloid Interface Sci. 112, 109 (2004)

    Article  Google Scholar 

  29. J.M.D. Lane, A.E. Ismail, M. Chandross, C.D. Lorenz, G.S. Grest, Phys. Rev. E 79, 050501(R) (2009)

    Article  ADS  Google Scholar 

  30. V.A. Rigo, L.S. de Lara, C.R. Miranda, Appl. Sur. Sci. 292, 742 (2014)

    Article  ADS  Google Scholar 

  31. H.R. Sondjaja, T.A. Hatton, K.C. Tam, Langmuir 24, 8501 (2008)

    Article  Google Scholar 

  32. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  MATH  ADS  Google Scholar 

  33. E.R. Cruz-Chu, A. Aksimentiev, K. Schulten, J. Phys. Chem. 110, 21497 (2006)

    Article  Google Scholar 

  34. H.A. Lorentz, Ann. Phys. 248, 127 (1881)

    Article  Google Scholar 

  35. D. Berthelot, C.R. Acad. Sci. 126, 1703 (1898)

    Google Scholar 

  36. J. Alejandre, G.A. Chapela, F. Bresme, J.-P. Hansen, J. Chem. Phys. 130, 174505 (2009)

    Article  ADS  Google Scholar 

  37. S. Gavryushov, J. Phys. Chem. B 111, 5264 (2007)

    Article  Google Scholar 

  38. D. Makimura, C. Metin, T. Kabashima, T. Matsuoka, Q.P. Nguyen, C.R. Miranda, J. Mater. Sci. 45, 5084 (2010)

    Article  ADS  Google Scholar 

  39. A.P. Thompson, S.J. Plimpton, W. Mattson, J. Chem. Phys. 131, 154107 (2009)

    Article  ADS  Google Scholar 

  40. R.W. Hockney, J.W Eastwood, Computer Simulations Using Particles (Adam Hilger, Bristol, New York, 1989)

  41. S. Nosé, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  42. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  43. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)

    Article  ADS  Google Scholar 

  44. R. Qiao, N.R. Aluru, Phys. Rev. Lett. 92, 198301 (2004)

    Article  ADS  Google Scholar 

  45. I.V. Schweigert, K.E.J. Lehtinen, M.J. Carrier, M.R. Zachariah, Phys. Rev. B 65, 235410 (2002)

    Article  ADS  Google Scholar 

  46. T. Hawa, M.R. Zachariah, J. Chem. Phys. 121, 9043 (2004)

    Article  ADS  Google Scholar 

  47. S.M. Thompson, K.E. Gubbins, J.P.R.B. Walton, R.A.R. Chantry, J.S. Rawlinson, J. Chem. Phys. 81, 530 (1984)

    Article  ADS  Google Scholar 

  48. C.D. Lorenz, A. Travesset, Phys. Rev. E 75, 061202 (2007)

    Article  ADS  Google Scholar 

  49. C.O. Metin, Ph.D. thesis, University of Texas, Austin, 2012

  50. C.R. Miranda, L.S. de Lara, B.C. Tonetto, in Proceedings of the SPE International Oilfield Nanotechnology Conference, Noordwijk, Netherlands, June 12–14, 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caetano R. Miranda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lara, L.S., Rigo, V.A. & Miranda, C.R. The stability and interfacial properties of functionalized silica nanoparticles dispersed in brine studied by molecular dynamics. Eur. Phys. J. B 88, 261 (2015). https://doi.org/10.1140/epjb/e2015-60543-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60543-1

Keywords

Navigation