Complex networks with scale-free nature and hierarchical modularity

Abstract

Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. Jeong, B. Tombor, R. Albert, Z. Oltvai, A.L. Barabási, Nature 407, 651 (2000)

    Article  ADS  Google Scholar 

  2. 2.

    H. Jeong, S. Mason, A.L. Barabási, Z. Oltvai, Nature 411, 41 (2001)

    Article  ADS  Google Scholar 

  3. 3.

    J. White, E. Southgate, J. Thompson, S. Brenner, Phil. Trans. R. Soc. London B 314, 1 (1986)

    Article  ADS  Google Scholar 

  4. 4.

    J. Montya, R. Solé, J. Theor. Biol. 214, 405 (2002)

    Article  Google Scholar 

  5. 5.

    R. Albert, H. Jeong, A.L. Barabási, Nature 401, 130 (1999)

    Article  ADS  Google Scholar 

  6. 6.

    R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001)

    Article  ADS  Google Scholar 

  7. 7.

    M. Newman, Phys. Rev. E 64, 016131 (2001)

    Article  ADS  Google Scholar 

  8. 8.

    M. Newman, Phys. Rev. E 68, 036122 (2003)

    Article  ADS  Google Scholar 

  9. 9.

    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    MATH  Article  ADS  Google Scholar 

  10. 10.

    A.L. Barabási, R. Albert, Science 286, 509 (1999)

    MathSciNet  Article  ADS  Google Scholar 

  11. 11.

    D. Watts, S. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  12. 12.

    E. Ravasz, A. Somera, D. Mongru, Z. Oltvai, A.L. Barabási, Science 297, 1551 (2002)

    Article  ADS  Google Scholar 

  13. 13.

    E. Ravasz, A.L. Barabási, Phys. Rev. E 67, 026112 (2003)

    Article  ADS  Google Scholar 

  14. 14.

    A. Clauset, C. Moore, M. Newman, Nature 453, 98 (2008)

    Article  ADS  Google Scholar 

  15. 15.

    C.A. Lewis, N. Jones, M. Porter, C. Deane, BMC Syst. Biol. 4, 100 (2010)

    Article  Google Scholar 

  16. 16.

    M. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  17. 17.

    M. Newman, Networks: An Introduction (Oxford University Press, 2010)

  18. 18.

    F. Chen, Z. Chen, X. Wang, Z. Yuan, Commun. Nonlinear Sci. Numer. Simul. 13, 1405 (2008)

    MATH  MathSciNet  Article  ADS  Google Scholar 

  19. 19.

    M. Newman, S. Strogatz, D. Watts, Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  20. 20.

    P. Holme, B. Kim, Phys. Rev. E 65, 026107 (2002)

    Article  ADS  Google Scholar 

  21. 21.

    M. Newman, Nat. Phys. 8, 25 (2012)

    Article  Google Scholar 

  22. 22.

    R. Albert, A.L. Barabási, Phys. Rev. Lett. 85, 5234 (2000)

    Article  ADS  Google Scholar 

  23. 23.

    A. Vázquez, Phys. Rev. E 67, 056104 (2003)

    Article  ADS  Google Scholar 

  24. 24.

    T. Evans, J. Saramäki, Phys. Rev. E 72, 026138 (2005)

    MathSciNet  Article  ADS  Google Scholar 

  25. 25.

    A. Vázquez, A. Flammini, A. Maritan, A. Vespignani, Complexus 1, 38 (2002)

    Google Scholar 

  26. 26.

    J. Davidsen, H. Ebel, S. Bornholdt, Phys. Rev. Lett. 88, 128701 (2002)

    Article  ADS  Google Scholar 

  27. 27.

    G. Bianconi, R. Darst, J. Iacovacci, S. Fortunato, Phys. Rev. E 90, 042806 (2014)

    Article  ADS  Google Scholar 

  28. 28.

    R. Ferrer i Cancho, R. Solé, Proc. R. Soc. London B 268, 2261 (2001)

    Article  Google Scholar 

  29. 29.

    R. Ferrer i Cancho, R. Solé, R. Köhler, Phys. Rev. E 69, 051915 (2004)

    Article  ADS  Google Scholar 

  30. 30.

    J. Saramäki, K. Kaski, Physica A 341, 80 (2004)

    MathSciNet  Article  ADS  Google Scholar 

  31. 31.

    M. Newman, SIAM Rev. 45, 167 (2003)

    MATH  MathSciNet  Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Ambika.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shekatkar, S.M., Ambika, G. Complex networks with scale-free nature and hierarchical modularity. Eur. Phys. J. B 88, 227 (2015). https://doi.org/10.1140/epjb/e2015-60501-y

Download citation

Keywords

  • Statistical and Nonlinear Physics