Complex networks with scale-free nature and hierarchical modularity

Regular Article

Abstract

Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    H. Jeong, B. Tombor, R. Albert, Z. Oltvai, A.L. Barabási, Nature 407, 651 (2000) CrossRefADSGoogle Scholar
  2. 2.
    H. Jeong, S. Mason, A.L. Barabási, Z. Oltvai, Nature 411, 41 (2001)CrossRefADSGoogle Scholar
  3. 3.
    J. White, E. Southgate, J. Thompson, S. Brenner, Phil. Trans. R. Soc. London B 314, 1 (1986)CrossRefADSGoogle Scholar
  4. 4.
    J. Montya, R. Solé, J. Theor. Biol. 214, 405 (2002) CrossRefGoogle Scholar
  5. 5.
    R. Albert, H. Jeong, A.L. Barabási, Nature 401, 130 (1999) CrossRefADSGoogle Scholar
  6. 6.
    R. Pastor-Satorras, A. Vázquez, A. Vespignani, Phys. Rev. Lett. 87, 258701 (2001) CrossRefADSGoogle Scholar
  7. 7.
    M. Newman, Phys. Rev. E 64, 016131 (2001) CrossRefADSGoogle Scholar
  8. 8.
    M. Newman, Phys. Rev. E 68, 036122 (2003) CrossRefADSGoogle Scholar
  9. 9.
    R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)MATHCrossRefADSGoogle Scholar
  10. 10.
    A.L. Barabási, R. Albert, Science 286, 509 (1999) MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    D. Watts, S. Strogatz, Nature 393, 440 (1998) CrossRefADSGoogle Scholar
  12. 12.
    E. Ravasz, A. Somera, D. Mongru, Z. Oltvai, A.L. Barabási, Science 297, 1551 (2002) CrossRefADSGoogle Scholar
  13. 13.
    E. Ravasz, A.L. Barabási, Phys. Rev. E 67, 026112 (2003) CrossRefADSGoogle Scholar
  14. 14.
    A. Clauset, C. Moore, M. Newman, Nature 453, 98 (2008)CrossRefADSGoogle Scholar
  15. 15.
    C.A. Lewis, N. Jones, M. Porter, C. Deane, BMC Syst. Biol. 4, 100 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Newman, Phys. Rev. Lett. 89, 208701 (2002) CrossRefADSGoogle Scholar
  17. 17.
    M. Newman, Networks: An Introduction (Oxford University Press, 2010)Google Scholar
  18. 18.
    F. Chen, Z. Chen, X. Wang, Z. Yuan, Commun. Nonlinear Sci. Numer. Simul. 13, 1405 (2008) MATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    M. Newman, S. Strogatz, D. Watts, Phys. Rev. E 64, 026118 (2001) CrossRefADSGoogle Scholar
  20. 20.
    P. Holme, B. Kim, Phys. Rev. E 65, 026107 (2002) CrossRefADSGoogle Scholar
  21. 21.
    M. Newman, Nat. Phys. 8, 25 (2012)CrossRefGoogle Scholar
  22. 22.
    R. Albert, A.L. Barabási, Phys. Rev. Lett. 85, 5234 (2000) CrossRefADSGoogle Scholar
  23. 23.
    A. Vázquez, Phys. Rev. E 67, 056104 (2003) CrossRefADSGoogle Scholar
  24. 24.
    T. Evans, J. Saramäki, Phys. Rev. E 72, 026138 (2005) MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    A. Vázquez, A. Flammini, A. Maritan, A. Vespignani, Complexus 1, 38 (2002)Google Scholar
  26. 26.
    J. Davidsen, H. Ebel, S. Bornholdt, Phys. Rev. Lett. 88, 128701 (2002) CrossRefADSGoogle Scholar
  27. 27.
    G. Bianconi, R. Darst, J. Iacovacci, S. Fortunato, Phys. Rev. E 90, 042806 (2014) CrossRefADSGoogle Scholar
  28. 28.
    R. Ferrer i Cancho, R. Solé, Proc. R. Soc. London B 268, 2261 (2001) CrossRefGoogle Scholar
  29. 29.
    R. Ferrer i Cancho, R. Solé, R. Köhler, Phys. Rev. E 69, 051915 (2004) CrossRefADSGoogle Scholar
  30. 30.
    J. Saramäki, K. Kaski, Physica A 341, 80 (2004)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    M. Newman, SIAM Rev. 45, 167 (2003)MATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Indian Institute of Science Education and ResearchPuneIndia

Personalised recommendations