Dynamical structure factor of magnetic Bloch oscillations at finite temperatures

Regular Article

Abstract

Domain-walls in one-dimensional Ising ferromagnets can undergo Bloch oscillations when subjected to a skew magnetic field. Such oscillations imply finite temperature non-dispersive low-frequency peaks in the dynamical structure factor which can be probed in neutron scattering. We study in detail the spectral weight of these peaks. Using an analytical approach based on an approximate treatment of a gas of spin-cluster excitations we give an explicit expression for the momentum- and temperature-dependence of the spectral weights. Generally the spectral weights increase with temperature T and approaches the same order of magnitude as the spin-wave spectral weights at high temperatures. We compare the analytical expression to numerical exact diagonalizations and find that it can, without any adjustable parameters, account for the T and momentum-transfer dependence of the numerically obtained spectral weights in the parameter regime where the ratio of magnetic fields hx/hz ≪ 1 and the temperature is hx < T < ∼ Jz/2. We also carry out numerical calculations pertinent to the material CoNb2O6, and find qualitatively similar results.

Keywords

Solid State and Materials 

References

  1. 1.
    F. Bloch, Z. Phys. 52, 555 (1928)CrossRefADSMATHGoogle Scholar
  2. 2.
    C. Zener, Proc. R. Soc. London A 145, 523 (1934) CrossRefADSGoogle Scholar
  3. 3.
    E.E. Mendez, F. Agullo-Rueda, J.M. Hong, Phys. Rev. Lett. 60, 2426 (1988) CrossRefADSGoogle Scholar
  4. 4.
    M. Ben Dahan, E. Peik, J. Reichel, Y. Castin, C. Salomon, Phys. Rev. Lett. 76, 4508 (1996) CrossRefADSGoogle Scholar
  5. 5.
    R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan, C.J. Oton, L. Pavesi, Phys. Rev. Lett. 91, 263902 (2003) CrossRefADSGoogle Scholar
  6. 6.
    H. Sanchis-Alepuz, Y.A. Kosevich, J. Sanchez-Dehesa, Phys. Rev. Lett. 98, 134301 (2007) CrossRefADSGoogle Scholar
  7. 7.
    J. Kyriakidis, D. Loss, Phys. Rev. B 58, 5568 (1998) CrossRefADSGoogle Scholar
  8. 8.
    G. Wannier, Phys. Rev. 117, 432 (1960) MathSciNetCrossRefADSMATHGoogle Scholar
  9. 9.
    H. Shiba, Prog. Theor. Phys. 64, 466 (1980)CrossRefADSGoogle Scholar
  10. 10.
    S. Shinkevich, O.F. Syljuåsen, Phys. Rev. B 85, 104408 (2012) CrossRefADSGoogle Scholar
  11. 11.
    S.B. Rutkevich, J. Stat. Mech. 2010, P07015 (2010) CrossRefGoogle Scholar
  12. 12.
    Z. Cai, L. Wang, X.C. Xie, U. Schollwöck, X.R. Wang, M. Di Ventra, Y. Wang, Phys. Rev. B 83, 155119 (2011) CrossRefADSGoogle Scholar
  13. 13.
    H.C. Fogedby, J. Phys. C 11, 2801 (1978) CrossRefADSGoogle Scholar
  14. 14.
    J.B. Torrance Jr., M. Tinkham, Phys. Rev. 187, 587 (1969) CrossRefADSGoogle Scholar
  15. 15.
    J.B. Torrance Jr., M. Tinkham, Phys. Rev. 187, 595 (1969) CrossRefADSGoogle Scholar
  16. 16.
    M. Abramowitz, I.A. Stegun, Handbook of mathematical functions, 9th edn. (Dover publications, New York, 1972) Google Scholar
  17. 17.
    M. Suzuki, Phys. Lett. A 301, 398 (2002) CrossRefADSMATHGoogle Scholar
  18. 18.
    R. Coldea, D.A. Tennant, E.M. Wheeler, E. Wawrzynska, D. Prabhakaran, M. Telling, K. Habicht, P. Smeibidl, K. Kiefer, Science 327, 177 (2010) CrossRefADSGoogle Scholar
  19. 19.
    J.A. Kjäll, F. Pollmann, J.E. Moore, Phys. Rev. B 83, 020407(R) (2011) CrossRefADSGoogle Scholar
  20. 20.
    G.N. Watson, in A Treatise on the Theory of Bessel Functions (Cambridge Mathematical Library edition, Cambridge, 1995), Chap. XIGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OsloBlindernOslo, Norway

Personalised recommendations