Skip to main content
Log in

From calls to communities: a model for time-varying social networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Social interactions vary in time and appear to be driven by intrinsic mechanisms that shape the emergent structure of social networks. Large-scale empirical observations of social interaction structure have become possible only recently, and modelling their dynamics is an actual challenge. Here we propose a temporal network model which builds on the framework of activity-driven time-varying networks with memory. The model integrates key mechanisms that drive the formation of social ties – social reinforcement, focal closure and cyclic closure, which have been shown to give rise to community structure and small-world connectedness in social networks. We compare the proposed model with a real-world time-varying network of mobile phone communication, and show that they share several characteristics from heterogeneous degrees and weights to rich community structure. Further, the strong and weak ties that emerge from the model follow similar weight-topology correlations as real-world social networks, including the role of weak ties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

    Article  ADS  Google Scholar 

  2. S. Wasserman, K. Faust, in Social Network Analysis: Methods and Applications (Structural Analysis in the Social Sciences), 1st edn. (Cambridge University Press, 1994), Vol. 8

  3. D. Lazer et al., Science 323, 721 (2009)

    Article  Google Scholar 

  4. A. Vespignani, Science 325, 425 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. D.J. Watts, Proc. Natl. Acad. Sci. 99, 5766 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. D.J. de Solla Price, Science 149, 510 (1965)

    Article  ADS  Google Scholar 

  7. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2001)

    Article  ADS  Google Scholar 

  8. M.S. Granovetter, Am. J. Sociol. 78, 1360 (1973)

    Article  Google Scholar 

  9. J.P. Onnela et al., Proc. Natl. Acad. Sci. 104, 7332 (2007)

    Article  ADS  Google Scholar 

  10. A. Rapoport, Bull. Math. Biophys. 19, 257 (1957)

    Article  MathSciNet  Google Scholar 

  11. S. Fortunato, Phys. Rep. 486, 75 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. J.M. Kumpula et al., Phys. Rev. Lett. 99, 228701 (2007)

    Article  ADS  Google Scholar 

  13. G. Palla, A.-L. Barabási, T. Vicsek, Nature 446, 664 (2007)

    Article  ADS  Google Scholar 

  14. J. Saramäki et al., Proc. Natl. Acad. Sci. 111, 942 (2014)

    Article  ADS  Google Scholar 

  15. P. Holme, J. Saramäki, Phys. Rep. 519, 97 (2012)

    Article  ADS  Google Scholar 

  16. L. Kovanen et al., in Temporal Networks, Understanding Complex Systems, edited by P. Holme, J. Saramäki (Springer, Berlin, Heidelberg, 2013), pp. 119–133

  17. L. Kovanen, M. Karsai, K. Kaski, J. Kertész, J. Saramäki, J. Stat. Mech. 2011, P11005 (2011)

    Article  Google Scholar 

  18. K. Zhao, J. Stehlé, G. Bianconi, A. Barrat, Phys. Rev. E 83, 056109 (2011)

    Article  ADS  Google Scholar 

  19. M. Karsai, N. Perra, A. Vespignani, Sci. Rep. 4, 4001 (2014)

    Article  ADS  Google Scholar 

  20. A.-L. Barabási, Nature 435, 207 (2005)

    Article  ADS  Google Scholar 

  21. A.-L. Barabási, Bursts: The Hidden Pattern Behind Everything We Do, 1st edn. (Dutton Adult, 2010)

  22. L. Kovanen, K. Kaski, J. Kertész, J. Saramäki, Proc. Natl. Acad. Sci. 110, 18070 (2013)

    Article  ADS  Google Scholar 

  23. G. Miritello, R. Lara, M. Cebrian, E. Moro, Sci. Rep. 3, 1950 (2013)

    Article  ADS  Google Scholar 

  24. M. Karsai et al., Phys. Rev. E 83, 025102 (2011)

    Article  ADS  Google Scholar 

  25. M. Kivelä et al., J. Stat. Mech. 2012, P03005 (2012)

    Article  Google Scholar 

  26. G. Miritello, E. Moro, R. Lara, Phys. Rev. E 83, 045102 (2011)

    Article  ADS  Google Scholar 

  27. R. Lambiotte, L. Tabourier, J.-C. Delvenne, Eur. Phys. J. B 86, 320 (2013)

    Article  ADS  Google Scholar 

  28. T. Takaguchi, N. Masuda, P. Holme, PLoS One 8, e68629 (2013)

    Article  ADS  Google Scholar 

  29. B. Min, K.I. Goh, A. Vazquez, Phys. Rev. E 83, 036102 (2011)

    Article  ADS  Google Scholar 

  30. L. Rocha, A. Decuyper, V. Blondel, Dynamics On and Of Complex Networks, in Modeling and Simulation in Science, Engineering and Technology, edited by A. Mukherjee et al. (Springer, New York, 2013), Vol. 2, pp. 301–314

  31. N. Perra, B. Gonçalves, R. Pastor-Satorras, A. Vespignani, Sci. Rep. 2, 469 (2012)

    Article  ADS  Google Scholar 

  32. M.V. Tomasello et al., Sci. Rep. 4, 5679 (2014)

    ADS  Google Scholar 

  33. N. Perra et al., Phys. Rev. Lett. 109, 238701 (2012)

    Article  ADS  Google Scholar 

  34. M. Starnini, R.P. Satorras, Phys. Rev. E 87, 062807 (2013)

    Article  ADS  Google Scholar 

  35. S. Liu, N. Perra, M. Karsai, A. Vespignani, Phys. Rev. Lett. 112, 118702 (2014)

    Article  ADS  Google Scholar 

  36. J.M. Kumpula et al., Comput. Phys. Commun. 280, 517 (2009)

    Article  ADS  Google Scholar 

  37. R.I.M. Dunbar, J. Hum. Evol. 22, 469 (1992)

    Article  Google Scholar 

  38. E. Ubaldi et al., to be published (2015)

  39. G. Bianconi, R.K. Darst, J. Iacovacci, S. Fortunato, Phys. Rev. E 90, 042806 (2014)

    Article  ADS  Google Scholar 

  40. F. Heider, J. Phys. 21, 107 (1946)

    Google Scholar 

  41. K.H. Wolff, The Sociology of Georg Simmel (Nabu Press, 2011)

  42. A. Chmiel, K. Kowalska, J.A. Holyst, Phys. Rev. E 80, 066122 (2009)

    Article  ADS  Google Scholar 

  43. J.-P. Onnela et al., New. J. Phys. 9, 179 (2007)

    Article  ADS  Google Scholar 

  44. C. Cattuto et al., PLoS One 5, e11596 (2010)

    Article  ADS  Google Scholar 

  45. M. Newman, Networks: An Introduction, 1st edn. (Oxford University Press, USA, 2010)

  46. G. Krings, M. Karsai, S. Bernardsson, V.D. Blondel, J. Saramäki, EPJ Data Science 1, 4 (2012)

    Article  Google Scholar 

  47. A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks, 1st edn. (Cambridge University Press, 2008)

  48. Rocha et al., PLOS Comput. Biol. 7, e1001109 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márton Karsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurent, G., Saramäki, J. & Karsai, M. From calls to communities: a model for time-varying social networks. Eur. Phys. J. B 88, 301 (2015). https://doi.org/10.1140/epjb/e2015-60481-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60481-x

Keywords

Navigation