Skip to main content
Log in

Partial pseudospin polarization, latticetronics and Fano resonances in quantum dots based in graphene ribbons: a conductance spectroscopy

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this work we study, as a function of the height V and width L b of the potential barriers, the transport of Dirac quasi-particles through quantum dots in graphene ribbons. We observed, as we increase V, a partial polarization (PP) of the pseudospin due to the participation of the hyperbolic bands. This generates polarizations in the sub-lattices A or B outside the dot regions for single, coupled, and open dots. Thus for energies around the Dirac point, the conductance G at both sides of the dot shows a latticetronics of conductances G A and G B as a function of V and L b . This fact can be used as a PP spectroscopy which associates hole-type waves with the latticetronics. A periodic enhancement of PP is obtained with the increase of V in dots formed by barriers that completely occupy the nanoribbon width. For this case, a direct correspondence between G(V) and PP(V) exists. On the other hand, for the open dots, the PP(V) and the G(V) show a complex behavior that exhibit higher intensities when compared to the previous case. In the Dirac limit we have no backscattering signs, however when we move slightly away from this limit the first signs of confinement appear in the PP(V) (it freezes in a given sub-lattice). In the last case the backscattering fingerprints are obtained directly from the conductance (splittings). The open quantum dots are very sensible to their opening w d and this generates Fano line-shapes of difficult interpretation around the Dirac point. The PP spectroscopy used here allows us to understand the influence of w d in the relativistic analogues and to associate electron-type waves with the observed Fano line-shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Britnell, R.V. Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, L. Eaves, Nat. Commun. 4, 1794 (2013)

    Article  ADS  Google Scholar 

  2. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010)

    Article  ADS  Google Scholar 

  3. B. Özyilmaz, P. Jarillo-Herrero, D. Efetov, D.A. Abanin, L.S. Levitov, P. Kim, Phys. Rev. Lett. 99, 166804 (2007)

    Article  ADS  Google Scholar 

  4. Y. Fan, M. Zhao, Z. Wang, X. Zhang, H. Zhang, Appl. Phys. Lett. 98, 083103 (2011)

    Article  ADS  Google Scholar 

  5. H. Sevinçli, M. Topsakal, S. Ciraci, Phys. Rev. B 78, 245402 (2008)

    Article  ADS  Google Scholar 

  6. A. Rozhkov, G. Giavaras, Y.P. Bliokh, V. Freilikher, F. Nori, Phys. Rep. 503, 77 (2011)

    Article  ADS  Google Scholar 

  7. K. Novoselov, Nat. Mater. 6, 720 (2007)

    Article  ADS  Google Scholar 

  8. A.F. Young, P. Kim, Nat. Phys. 5, 222 (2009)

    Article  Google Scholar 

  9. M.I. Katsnelson, K. Novoselov, Solid State Commun. 143, 3 (2007)

    Article  ADS  Google Scholar 

  10. L.P. Zârbo, B.K. Nikolić, Europhys. Lett. 80, 47001 (2007)

    Article  ADS  Google Scholar 

  11. P. Faccioli, E. Lipparini, Phys. Rev. B 80, 045405 (2009)

    Article  ADS  Google Scholar 

  12. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  13. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  14. A.K. Geim, A.H. MacDonald, Phys. Today 60, 35 (2007)

    Article  Google Scholar 

  15. M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  16. I. Brihuega, P. Mallet, C. Bena, S. Bose, C. Michaelis, L. Vitali, F. Varchon, L. Magaud, K. Kern, J.Y. Veuillen, Phys. Rev. Lett. 101, 206802 (2008)

    Article  ADS  Google Scholar 

  17. D. Pesin, A.H. MacDonald, Nat. Mater. 11, 409 (2012)

    Article  ADS  Google Scholar 

  18. A. Rycerz, J. Tworzydlo, C.W.J. Beenakker, Nat. Phys. 3, 172 (2007)

    Article  Google Scholar 

  19. P. San-Jose, E. Prada, E. McCann, H. Schomerus, Phys. Rev. Lett. 102, 247204 (2009)

    Article  ADS  Google Scholar 

  20. X. Li, Z. Zhang, D. Xiao, Phys. Rev. B 81, 195402 (2010)

    Article  ADS  Google Scholar 

  21. L.I.A. López, S.M. Yaro, A. Champi, S. Ujevic, M. Mendoza, J. Phys.: Condens. Matter 26, 065301 (2014)

    Google Scholar 

  22. J. Güttinger, F. Molitor, C. Stampfer, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, K. Ensslin, Rep. Prog. Phys. 75, 126502 (2012)

    Article  ADS  Google Scholar 

  23. M. Raith, C. Ertler, P. Stano, M. Wimmer, J. Fabian, Phys. Rev. B 89, 085414 (2014)

    Article  ADS  Google Scholar 

  24. T. Low, F. Guinea, M.I. Katsnelson, Phys. Rev. B 83, 195436 (2011)

    Article  ADS  Google Scholar 

  25. J.M. Kinder, J.J. Dorando, H. Wang, G.K.-L. Chan, Nano Lett. 9, 1980 (2009)

    Article  ADS  Google Scholar 

  26. J.M. Pereira Jr., F.M. Peeters, A. Chaves, G.A. Farias, Semicond. Sci. Technol. 25, 033002 (2010)

    Article  ADS  Google Scholar 

  27. J.M. Pereira Jr., F.M. Peeters, R.N.C. Filho, G.A. Farias, J. Phys.: Condens. Matter 21, 045301 (2009)

    ADS  Google Scholar 

  28. T. Ando, T. Nakanishi, R. Saito, J. Phys. Soc. Jpn 67, 2857 (1998)

    Article  ADS  Google Scholar 

  29. T. Ando, NPG Asia Mater. 1, 17 (2009)

    Article  Google Scholar 

  30. C.J. Páez, D.A. Bahamon, A.L.C. Pereira, Phys. Rev. B 90, 125426 (2014)

    Article  ADS  Google Scholar 

  31. C.W.J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)

    Article  ADS  Google Scholar 

  32. A.V. Shytov, M.S. Rudner, L.S. Levitov, Phys. Rev. Lett. 101, 156804 (2008)

    Article  ADS  Google Scholar 

  33. V. Nam Do, V.H. Nguyen, P. Dollfus, A. Bournel, J. Appl. Phys. 104, 063708 (2008)

    Article  ADS  Google Scholar 

  34. V.H. Nguyen, V.N. Do, A. Bournel, V.L. Nguyen, P. Dollfus, J. Phys.: Conf. Ser. 193, 012100 (2009)

    ADS  Google Scholar 

  35. N.V. Hung, A. Bournel, P. Dollfus, N.V. Lien, J. Phys.: Conf. Ser. 187, 012037 (2009)

    ADS  Google Scholar 

  36. B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard, Nat. Phys. 3, 192 (2007)

    Article  Google Scholar 

  37. K. Wakabayashi, Y. Takane, M. Yamamoto, M. Sigrist, New J. Phys. 11, 095016 (2009)

    Article  ADS  Google Scholar 

  38. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  MATH  ADS  Google Scholar 

  39. M.V. Fistul, K.B. Efetov, Phys. Rev. B 90, 125416 (2014)

    Article  ADS  Google Scholar 

  40. L. Huang, Y.-C. Lai, D.K. Ferry, R. Akis, S.M. Goodnick, J. Phys.: Condens. Matter 21, 344203 (2009)

    Google Scholar 

  41. X. Liu, J.B. Oostinga, A.F. Morpurgo, L.M.K. Vandersypen, Phys. Rev. B 80, 121407(R) (2009)

    Article  ADS  Google Scholar 

  42. A. Cresti, G. Grosso, G.P. Parravicini, Phys. Rev. B 76, 205433 (2007)

    Article  ADS  Google Scholar 

  43. M. Mendoza, P.A. Schulz, Phys. Rev. B 68, 205302 (2003)

    Article  ADS  Google Scholar 

  44. D.K. Ferry, S.M. Goodnick, Transport in Nanostructures (Cambridge University Press, Cambridge, 1997)

  45. M. Mendoza, S. Ujevic, J. Phys.: Condens. Matter 24, 235302 (2012)

    ADS  Google Scholar 

  46. A.L.C. Pereira, P.A. Schulz, Phys. Rev. B 77, 075416 (2008)

    Article  ADS  Google Scholar 

  47. J. Fernández-Rossier, J.J. Palacios, Phys. Rev. Lett. 99, 177204 (2007)

    Article  ADS  Google Scholar 

  48. D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  49. H. Zheng, Z.F. Wang, T. Luo, Q.W. Shi, J. Chen, Phys. Rev. B 75, 165414 (2007)

    Article  ADS  Google Scholar 

  50. L. Tapaszto, G. Dobrik, P. Lambin, L.P. Biro, Nat. Nanotechnol. 3, 397 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis I.A. López.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, L., Champi, A., Ujevic, S. et al. Partial pseudospin polarization, latticetronics and Fano resonances in quantum dots based in graphene ribbons: a conductance spectroscopy. Eur. Phys. J. B 88, 298 (2015). https://doi.org/10.1140/epjb/e2015-60467-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60467-8

Keywords

Navigation