The importance of electron correlation in graphene and hydrogenated graphene

Regular Article

Abstract

Local density approximation (LDA) and Green function effective Coulomb (GW) calculations are performed to investigate the effect of electronic correlations on the electronic properties of both graphene and graphane. The size of band gap in graphane increases from 3.7 eV in LDA to 4.9 eV in GW approximation. By calculating maximally localized Wannier wave functions, we evaluate the necessary integrals to get the Hubbard U and the exchange J interaction from first principles for both graphene and graphane. Our ab-initio estimates indicate that in the case of graphene, in addition to the hopping amplitude t ∼ 2.8 eV giving rise to the Dirac nature of low lying excitations, the Hubbard U value of ∼8.7 eV gives rise to a super-exchange strength of JAFM ∼ 3.5 eV. This value dominates over the direct (ferromagnetic) exchange value of JFM ∼ 1.6 eV. This brings substantial Mott-Heisenberg aspects into the problem of graphene. Moreover, similarly large values of the Hubbard and super-exchange strength in graphane suggests that the nature of gap in graphane has substantial Mott character.

Keywords

Solid State and Materials 

References

  1. 1.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefADSGoogle Scholar
  2. 2.
    M.I. Katsnelson, Mater. Today 10, 20 (2007)CrossRefGoogle Scholar
  3. 3.
    S. Das Sarma, A.K. Geim, P. Kim, A.H. MacDonald, Solid State Commun. 143, 1 (2007)CrossRefADSGoogle Scholar
  4. 4.
    M. Calandra, F. Mauri, Phys. Rev. B 76, 205411 (2007) CrossRefADSGoogle Scholar
  5. 5.
    A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Nat. Phys. 3, 36 (2007)CrossRefGoogle Scholar
  6. 6.
    J.O. Sofo, A.S. Chaudhari, G.D. Barber, Phys. Rev. B 75, 153401 (2007) CrossRefADSGoogle Scholar
  7. 7.
    D.W. Boukhvalov, M.I. Katsnelson, A.I. Lichtenstein, Phys. Rev. B 77, 035427 (2008) CrossRefADSGoogle Scholar
  8. 8.
    D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, K.S. Novoselov, Science 323, 610 (2009) CrossRefADSGoogle Scholar
  9. 9.
    M. Pumera, C.H.A. Wong, Chem. Soc. Rev. 42, 5987 (2013) CrossRefGoogle Scholar
  10. 10.
    V. Tozzini, V. Pellegrinia, Phys. Chem. Chem. Phys. 15, 80 (2013)CrossRefGoogle Scholar
  11. 11.
    A.H. Castro Neto, F. Guinea, Phys. Rev. Lett. 103, 026804 (2009) CrossRefADSGoogle Scholar
  12. 12.
    J. Balakrishnan, G.K.W. Koon, M. Jaiswal, A.H. Castro Neto, B. Özyilmaz, Nat. Phys. 9, 284 (2013)CrossRefGoogle Scholar
  13. 13.
    N.S. Virka, N.M. Harrison, B. Montanaric, Nanotech 1, 296 (2010)Google Scholar
  14. 14.
    S. Lebegue, M. Klintenberg, O. Eriksson, M.I. Katsnelson, Phys. Rev. B 79, 245117 (2009) CrossRefADSGoogle Scholar
  15. 15.
    O. Leenaerts, H. Peelaers, A.D. Hernandez-Nieves, B. Partoens, F.M. Peeters, Phys. Rev. B 82, 195436 (2010) CrossRefADSGoogle Scholar
  16. 16.
    D. Haberer, D.V. Vyalikh, S. Taioli, B. Dora, M. Farjam, J. Fink, D. Marchenko, T. Pichler, K. Ziegler, S. Simonucci, M.S. Dresselhaus, M. Knupfer, B. Buchner, A. Grunei, Nano. Lett. 10, 3360, (2010) CrossRefADSGoogle Scholar
  17. 17.
    R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekr, Nat. Mater. 9, 315 (2010)CrossRefADSGoogle Scholar
  18. 18.
    D. Haberer, L. Petaccia, M. Farjam, S. Taioli, S.A. Jafari, A. Nefedov, W. Zhang, L. Calliari, G. Scarduelli, B. Dora, D.V. Vyalikh, T. Pichler, Ch. Woll, D. Alfe, S. Simonucci, M.S. Dresselhaus, M. Knupfer, B. Buchner, A. Gruneis, Phys. Rev. B 83, 165433 (2011) CrossRefADSGoogle Scholar
  19. 19.
    H. Sevincli, M. Topsakal, E. Durgun, S. Ciraci, Phys. Rev. B 77, 195434 (2008) CrossRefADSGoogle Scholar
  20. 20.
    I. Zanella, S.B. Fagan, R. Mota, A.J. Fazzio, Phys. Chem. C 112, 9163 (2008) CrossRefGoogle Scholar
  21. 21.
    L. Pisani, J.A. Chan, B. Montanari, N.M. Harrison, Phys. Rev. B 75, 064418 (2007) CrossRefADSGoogle Scholar
  22. 22.
    J. Fernandez-Rossier, J.J. Palacios, Phys. Rev. Lett. 99, 177204 (2007) CrossRefADSGoogle Scholar
  23. 23.
    B. Huang, F. Liu, J. Wu, B.-L. Gu, W. Duan, Phys. Rev. B 77, 153411 (2008) CrossRefADSGoogle Scholar
  24. 24.
    J.J. Palacios, J. n-Rossier, L. Brey, Phys. Rev. B 77, 195428 (2008) CrossRefADSGoogle Scholar
  25. 25.
    O.V. Yazyev, L. Helm, Phys. Rev. B, 75, 125408 (2007) CrossRefADSGoogle Scholar
  26. 26.
    A.Y. Sh. Eng, H.L. Poh, F. Ank, M. Maryko, S. Matjkov, Z. Sofer, M. Pumera, ACS Nano 7, 5930 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Zhou, Q. Wang, Q. Sun, X.S. Chen, Y. Kawazoe, P. Jena, Nano Lett. 9, 3867 (2009)CrossRefGoogle Scholar
  28. 28.
    V.M. Pereira, F. Guinea, J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. Lett. 96, 036801 (2006)CrossRefADSGoogle Scholar
  29. 29.
    T.O. Wehling, E. Sasioglu, C. Friedrich, A.I. Lichtenstein, M.I. Katsnelson, S. Blugel, Phys. Rev. Lett. 106, 236805 (2011) CrossRefADSGoogle Scholar
  30. 30.
    M. Ebrahimkhas, S.A. Jafari, Phys. Rev. B 79, 205425 (2009) CrossRefADSGoogle Scholar
  31. 31.
    P.E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, V. Olevano, Phys. Rev. Lett. 101, 226405 (2008) CrossRefADSGoogle Scholar
  32. 32.
    E. Rotenberg, A. Bostwick, T. Ohta, J.L. McChesney, T. Seyller, K. Horn, Nat. Mater. 7, 258 (2008)CrossRefADSGoogle Scholar
  33. 33.
    H. Madsen, P. Blaha, K. Schwarz, E. Sjoustedt, L. Nordstrom, Phys. Rev. B 64, 195134 (2001) CrossRefADSGoogle Scholar
  34. 34.
    L. Hedin, Phys. Rev. 139, A796 (1965) CrossRefADSGoogle Scholar
  35. 35.
    F. Freimuth, Y. Mokrousov, D. Wortmann, S. Heinze, S. Blgel, Phys. Rev. B 78, 035120 (2008) CrossRefADSGoogle Scholar
  36. 36.
    S.Y. Zhou, D.A. Siegel, A.V. Fedorov, F. El Gabaly, A.K. Schmid, A.H. Castro Neto, D.-H. Lee, A. Lanzara. Nat. Mater. 7, 259 (2008)CrossRefGoogle Scholar
  37. 37.
    S.Y. Zhou, D.A. Siegel, A.V. Fedorov, A. Lanzara, Physica E 4, 2642 (2008)CrossRefADSGoogle Scholar
  38. 38.
    Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005) CrossRefADSGoogle Scholar
  39. 39.
    L. Yang, J. Deslippe, C. Park, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 103, 186802 (2009) CrossRefADSGoogle Scholar
  40. 40.
    P. Cudazzo, C. Attaccalite, I.V. Tokatly, A. Rubio, Phys. Rev. Lett. 10, 226804 (2010) CrossRefADSGoogle Scholar
  41. 41.
    T. Paiva, R.T. Scalettar, W. Zheng, R.R.P. Singh, J. Oitmaa, Phys. Rev. B 72, 085123 (2005) CrossRefADSGoogle Scholar
  42. 42.
    S. Sorella, E. Tosatti, Europhys. Lett. 19, 699 (1992)CrossRefADSGoogle Scholar
  43. 43.
    Z.Y. Meng, T.C. Lang, S. Wessel, F.F. Assaad, A. Muramatsu, Nature 464, 847 (2010) CrossRefADSGoogle Scholar
  44. 44.
    A. Vaezi, Xiao-Gang Wen, arXiv:1010.5744 (2010)
  45. 45.
    I.F. Herbut, Phys. Rev. Lett. 97, 146401 (2006) CrossRefADSGoogle Scholar
  46. 46.
    C. Honerkamp, Phys. Rev. Lett. 100, 146404 (2008) CrossRefADSGoogle Scholar
  47. 47.
    E. Adibi, S.A. Jafari, G. Baskaran (unpublished) Google Scholar
  48. 48.
    G. Baskaran, S.A. Jafari, Phys. Rev. Lett. 89, 016402 (2002) CrossRefADSGoogle Scholar
  49. 49.
    S.A. Jafari, G. Baskaran, J. Phys.: Condens. Matter 24, 095601 (2012) ADSGoogle Scholar
  50. 50.
    S.A. Jafari, Eur. Phys. J. B 68, 537 (2009)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GuilanRashtIran
  2. 2.Department of PhysicsSharif University of TechnologyTehranIran
  3. 3.Center of excellence for Complex Systems and Condensed Matter (CSCM)Sharif University of TechnologyTehranIran
  4. 4.School of PhysicsInstitute for Research in Fundamental Sciences (IPM)TehranIran

Personalised recommendations