Dimerized phase and entanglement in the one-dimensional spin-1 bilinear biquadratic model

Regular Article

Abstract

Dimerized phase and quantum entanglement are investigated in the one-dimensional spin-1 bilinear biquadratic model. Employing the infinite matrix product state representation, groundstate wavefunctions are numerically obtained by using the infinite time evolving block decimation method in the infinite lattice system. From a bipartite entanglement measure of the groundstates, i.e., von Neumann entropy, the phase transition points can be clearly extracted. Moreover, the even-bond and odd-bond von Neumann entropies show two different values in the spontaneous dimerized phase. It implies that the quantum entanglement can distinguish the two degenerate groundstates. Then, we define a dimer entropy in the spontaneous dimerized phase. Comparing to the dimer order parameter, the dimer entropy can play a role of a local order parameter to characterize the spontaneous dimerized phase.

Keywords

Solid State and Materials 

References

  1. 1.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)Google Scholar
  2. 2.
    R.E. Prangee, S.M. Girvin, The Quantum Hall Effect (Springer Press, New York, 1990)Google Scholar
  3. 3.
    J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)CrossRefADSGoogle Scholar
  4. 4.
    T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002) MathSciNetCrossRefADSGoogle Scholar
  5. 5.
    S.-J. Gu, H.-Q. Lin, Y.-Q. Li, Phys. Rev. A 68, 042330 (2003) CrossRefADSGoogle Scholar
  6. 6.
    T. Roscilde, P. Verrucchi, A. Fubini, S. Haas, V. Tognetti, Phys. Rev. Lett. 93, 167203 (2004) CrossRefADSGoogle Scholar
  7. 7.
    P. Calabrese, J. Cardy, J. Stat. Mech. 2004, P06002 (2004) Google Scholar
  8. 8.
    J. Cao, S.-J. Gu, Y. Wang, H.-Q. Lin, J. Phys. A 41, 205303 (2008) MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    I. Peschel, J. Stat. Mech. 2004, P12005 (2004) CrossRefGoogle Scholar
  10. 10.
    R. Orús, Phys. Rev. Lett. 100, 130502 (2008) CrossRefADSGoogle Scholar
  11. 11.
    M. Fannes, B. Nachtergaele, R.F. Werner, Commun. Math. Phys. 144, 3 (1994)MathSciNetGoogle Scholar
  12. 12.
    S. Östlund, S. Rommer. Phys. Rev. Lett. 75, 3537 (1995) CrossRefADSGoogle Scholar
  13. 13.
    G. Vidal, Phys. Rev. Lett. 91, 147902 (2003) CrossRefADSGoogle Scholar
  14. 14.
    G. Vidal, Phys. Rev. Lett. 98, 070201 (2007) MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    B. Li, S.Y. Cho, H.-L. Wang, B.-Q. Hu, J. Phys. A 44, 392002 (2011) MathSciNetCrossRefGoogle Scholar
  16. 16.
    J.-H. Zhao, H.-L. Wang, B. Li, H.-Q. Zhou, Phys. Rev. E 82, 061127 (2010) CrossRefADSGoogle Scholar
  17. 17.
    Y.H. Su, B.-Q. Hu, S.-H. Li, S.Y. Cho, Phys. Rev. E 88, 032110 (2013) CrossRefADSGoogle Scholar
  18. 18.
    J.-H. Liu, Q.-Q. Shi, J.-H. Zhao, H.-Q. Zhou, J. Phys. A 44, 495302 (2011) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Y.H. Su, S.Y. Cho, B. Li, H.-L. Wang, H.-Q. Zhou, J. Phys. Soc. Jpn 81, 074003 (2012) CrossRefADSGoogle Scholar
  20. 20.
    H. Wang, Y.H. Su, B. Liang, L. Chen, Eur. Phys. J. B 88, 26 (2015)MathSciNetCrossRefADSGoogle Scholar
  21. 21.
    M. Suzuki, Phys. Lett. A 146, 319 (1990) MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)MATHMathSciNetCrossRefADSGoogle Scholar
  23. 23.
    S.-J. Gu, G.-S. Tian, H.-Q. Lin, New J. Phys. 8, 61 (2006)MathSciNetCrossRefADSGoogle Scholar
  24. 24.
    R. Orús, T.-C. Wei, H.-H. Tu, Phys. Rev. B 84, 064409 (2011) CrossRefADSGoogle Scholar
  25. 25.
    T. Murashima, K. Nomura, Phys. Rev. B 73, 214431 (2006) CrossRefADSGoogle Scholar
  26. 26.
    J.J. Garcia-Ripoll, M.A. Martin-Delgado, J.I. Cirac, Phys. Rev. Lett. 93, 250405 (2004) CrossRefADSGoogle Scholar
  27. 27.
    A. Gabriel, V. Murg, B.C. Hiesmayr, Phys. Rev. A 88, 052334 (2013) CrossRefADSGoogle Scholar
  28. 28.
    I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Phys. Rev. Lett. 59, 799 (1987)CrossRefADSGoogle Scholar
  29. 29.
    I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, Commun. Math. Phys. 115, 477 (1988) MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    L.A. Takhtajan, Phys. Lett. A 87, 479 (1982)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    H.M. Babujian, Nucl. Phys. B 215, 317 (1983) MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    C.K. Lai, J. Math. Phys. 15, 1675 (1974) CrossRefADSGoogle Scholar
  33. 33.
    B. Sutherland, Phys. Rev. B 12, 3795 (1975) CrossRefADSGoogle Scholar
  34. 34.
    F.D.M. Haldane, Phys. Lett. A 93, 464 (1983)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    T. Kennedy, H. Tasaki, Phys. Rev. B 45, 304 (1992)CrossRefADSGoogle Scholar
  36. 36.
    M. den Nijs, K. Rommelse, Phys. Rev. B 40, 4709 (1989) CrossRefADSGoogle Scholar
  37. 37.
    S.R. White, D.A. Huse, Phys. Rev. B 48, 3844 (1993) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Applied PhysicsXi’an Jiaotong UniversityXi’anP.R. China
  2. 2.School of ScienceXi’an Polytechnic UniversityXi’anP.R. China
  3. 3.Laboratory of Forensic Medicine and Biomedical InformationChongqing Medical UniversityChongqingP.R. China

Personalised recommendations