Characterization of vehicle behavior with information theory

  • Andre L.L. Aquino
  • Tamer S.G. Cavalcante
  • Eliana S. Almeida
  • Alejandro C. Frery
  • Osvaldo A. Rosso
Regular Article

Abstract

This work proposes the use of Information Theory for the characterization of vehicles behavior through their velocities. Three public data sets were used: (i) Mobile Century data set collected on Highway I-880, near Union City, California; (ii) Borlänge GPS data set collected in the Swedish city of Borlänge; and (iii) Beijing taxicabs data set collected in Beijing, China, where each vehicle speed is stored as a time series. The Bandt-Pompe methodology combined with the Complexity-Entropy plane were used to identify different regimes and behaviors. The global velocity is compatible with a correlated noise with fk Power Spectrum with k ≥ 0. With this we identify traffic behaviors as, for instance, random velocities (k ≃ 0) when there is congestion, and more correlated velocities (k ≃ 3) in the presence of free traffic flow.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    H. Hartenstein, K.P. Laberteaux, IEEE Commun. Magazine 46, 164 (2008)CrossRefGoogle Scholar
  2. 2.
    G. Liao, P. Shang, Fractals 20, 233 (2012)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    L. Pappalardo, S. Rinzivillo, Z. Qu, D. Pedreschi, F. Giannotti, Eur. Phys. J. Special Topics 215, 61 (2013)CrossRefADSGoogle Scholar
  4. 4.
    S.E. Jabari, H.X. Liu, Transp. Res. Part B: Methodol. 46, 156 (2012)CrossRefGoogle Scholar
  5. 5.
    C.E. Shannon, Bell System Technical Journal 27, 379 (1948)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    R. López-Ruiz, H. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995) CrossRefADSGoogle Scholar
  7. 7.
    P.W. Lamberti, M.T. Martín, A. Plastino, O.A. Rosso, Physica A 334, 119 (2004) MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    C. Bandt, B. Pompe, Phys. Rev. Lett. 88, 174102 (2002) CrossRefADSGoogle Scholar
  9. 9.
    O.A. Rosso, F. Olivares, L. Zunino, L. De Micco, A.L.L. Aquino, A.R. Plastino, H.A. Larrondo, Eur. Phys. J. B 86, 116 (2013)CrossRefADSGoogle Scholar
  10. 10.
    O.A. Rosso, H.A. Larrondo, M.T. Martín, A. Plastino, M.A. Fuentes, Phys. Rev. Lett. 99, 154102 (2007) CrossRefADSGoogle Scholar
  11. 11.
    J.C. Herrera, D.B. Work, R. Herring, X. Ban, Q. Jacobson, A.M. Bayen, Transp. Res. Part C: Emerging Technol. 18, 568 (2010)CrossRefGoogle Scholar
  12. 12.
    E. Frejinger, M. Blerlaire, Transp. Res. Part B: Methodol. 41, 363 (2007)CrossRefGoogle Scholar
  13. 13.
    B. Zhu, Q. Huang, L. Guibas, L. Zhang, Urban Population Migration Pattern Mining Based on Taxi Trajectories, in 3rd International Workshop on Mobile Sensing: The future, brought to you by Big Sensor Data, Philadelphia, USA, 2013 Google Scholar
  14. 14.
    D. Naboulsi, M. Fiore, On the Instantaneous Topology of a Large-Scale Urban Vehicular Network: the Cologne Case, in 14th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Bangalore, India, 2013 Google Scholar
  15. 15.
    M. Zanin, L. Zunino, O.A. Rosso, D. Papo, Entropy 14, 1553 (2012) MATHCrossRefADSGoogle Scholar
  16. 16.
    L.C. Carpi, P.M. Saco, O.A. Rosso, M.G. Ravetti, Eur. Phys. J. B 85, 389 (2012)CrossRefADSGoogle Scholar
  17. 17.
    H. Hurst, Trans. Am. Soc. Civil Eng. 116, 770 (1951) Google Scholar
  18. 18.
    C.K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger, Chaos 5, 82 (1995)CrossRefADSGoogle Scholar
  19. 19.
    P. Shang, Y. Lu, S. Kama, Physica A 370, 769 (2006) CrossRefADSGoogle Scholar
  20. 20.
    K. Daoudi, J.L. Vehel, Y. Meyer, Constr. Approx. 14, 349 (1998)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Tang, Y. Wang, F. Liu, Physica A 392, 4192 (2013) CrossRefADSGoogle Scholar
  22. 22.
    A.N. Shiryayev, in Selected Works of A.N. Kolmogorov, Mathematics and Its Applications (Springer, Netherlands, 1993), Vol. 27, pp. 57–61Google Scholar
  23. 23.
    D.P. Feldman, J.P. Crutchfield, Phys. Lett. A 238, 244 (1998) MATHMathSciNetCrossRefADSGoogle Scholar
  24. 24.
    I. Grosse, P.B. Galván, P. Carpena, R.R. Roldán, J. Oliver, H.E. Stanley, Phys. Rev. E 65, 041905 (2002) MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    M.T. Martín, A. Plastino, O.A. Rosso, Physica A 369, 439 (2006) CrossRefADSGoogle Scholar
  26. 26.
    R. Lopez-Ruiz, J. Sañudo, E. Romera, X. Calbet, in Statistical Complexity (Springer, Amsterdam, 2011), pp. 65–127 Google Scholar
  27. 27.
    K. Keller, M. Sinn, J. Emonds, Stoch. Dyn. 7, 247 (2007)MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Zunino, M. Soriano, O.A. Rosso, Phys. Rev. E 86, 046210 (2012) CrossRefADSGoogle Scholar
  29. 29.
    A.R. Plastino, A. Plastino, Phys. Rev. E 54, 4423 (1996) CrossRefADSGoogle Scholar
  30. 30.
    O.A. Rosso, L. Zunino, D.G. Pérez, A. Figliola, H.A. Larrondo, M. Garavaglia, M.T. Martín, A. Plastino, Phys. Rev. E 76, 061114 (2007) CrossRefADSGoogle Scholar
  31. 31.
    O.A. Rosso, L.C. Carpi, P.M. Saco, M.G. Ravetti, A. Plastino, H.A. Larrondo, Physica A 391, 42 (2012)CrossRefADSGoogle Scholar
  32. 32.
    O.A. Rosso, L.C. Carpi, P.M. Saco, M.G. Ravetti, H.A. Larrondo, A. Plastino, Eur. Phys. J. B 85, 419 (2012)CrossRefADSGoogle Scholar
  33. 33.
    L.D. Micco, J.G. Fernández, H.A. Larrondo, A. Plastino, O.A. Rosso, Physica A 391, 2564 (2012) CrossRefADSGoogle Scholar
  34. 34.
    D.M. Ritchie, AT&T Bell Laboratories Technical J. 63, 1577 (1984) CrossRefGoogle Scholar
  35. 35.
    R.A. Nelson, D.D. McCarthy, S. Malys, J. Levine, B. Guinot, H.F. Fliegel, R.L. Beard, T.R. Bartholomew, Metrologia 38, 509 (2001)CrossRefADSGoogle Scholar
  36. 36.
    R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2012 Google Scholar
  37. 37.
    J. Meeus, Astronomical Algorithms (Willmann-Bell Inc., Virginia, 1999)Google Scholar
  38. 38.
    C. Deboor, A Practical Guide to Splines (Springer-Verlag, New York, 1978)Google Scholar
  39. 39.
    M. Schroeder, Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise (Dover Publications, Mineola, New York, 2009) Google Scholar
  40. 40.
    W. Schottky, Phys. Rev. 28, 74 (1926)CrossRefADSGoogle Scholar
  41. 41.
    R.F. Voss, 1/f (Flicker) Noise: A Brief Review, in 33rd Annual Symposium on Frequency Control, New Jersey, USA, 1979 Google Scholar
  42. 42.
    G.F. Lawler, V. Limic, Random Walk: a Modern Introduction (Cambridge University Press, Cambridge, 2010) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andre L.L. Aquino
    • 1
  • Tamer S.G. Cavalcante
    • 1
  • Eliana S. Almeida
    • 1
  • Alejandro C. Frery
    • 1
  • Osvaldo A. Rosso
    • 2
    • 3
  1. 1.LaCCAN/CPMAT, Instituto de Computação, Universidade Federal de Alagoas (UFAL)MaceióBrazil
  2. 2.Instituto de Física, Universidade Federal de Alagoas (UFAL)MaceióBrazil
  3. 3.Instituto Tecnológico de Buenos Aires (ITBA)Ciudad Autónoma de Buenos AiresArgentina

Personalised recommendations