Magnetic properties of spin-1/2 Fermi gases with ferromagnetic interaction

Regular Article

Abstract

We investigate the magnetic properties of spin-1/2 charged Fermi gases with ferromagnetic coupling via mean-field theory, and find the interplay among the paramagnetism, diamagnetism and ferromagnetism. Paramagnetism and diamagnetism compete with each other. When increasing the ferromagnetic coupling the spontaneous magnetization occurs in a weak magnetic field. The critical ferromagnetic coupling constant of the paramagnetic phase to ferromagnetic phase transition increases linearly with the temperature. Both the paramagnetism and diamagnetism increase when the magnetic field increases. It reveals the magnetization density \(\bar M\) increases firstly as the temperature increases, and then reaches a maximum. Finally the magnetization density \(\bar M\) decreases smoothly in the high temperature region. The domed shape of the magnetization density \(\bar M\) variation is different from the behavior of Bose gas with ferromagnetic coupling. We also find the curve of susceptibility follows the Curie-Weiss law, and for a given temperature the susceptibility is directly proportional to the Landé factor.

Keywords

Solid State and Materials 

References

  1. 1.
    J. Noronha, D.J. Toms, Phys. Lett. A 267, 276 (2000)CrossRefADSGoogle Scholar
  2. 2.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)CrossRefADSGoogle Scholar
  3. 3.
    I. Bloch, Nat. Phys. 1, 23 (2005)CrossRefGoogle Scholar
  4. 4.
    D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, T. Esslinger, Science 340, 1307 (2013)CrossRefADSGoogle Scholar
  5. 5.
    Y.R. Lee, T.T. Wang, T.M. Rvachov, J.H. Choi, W. Ketterle, M.S. Heo, Phys. Rev. A 87, 043629 (2013)CrossRefADSGoogle Scholar
  6. 6.
    J. Daicic, N.E. Frankel, R.M. Gailis, V. Kowalenko, Phys. Rep. 237, 63 (1994)CrossRefADSGoogle Scholar
  7. 7.
    D.P. Arovas, A. Auerbach, Phys. Rev. B 38, 316 (1988)CrossRefADSGoogle Scholar
  8. 8.
    G.S. Rushbrooke, P.J. Wood, Proc. Phys. Soc. Sect. A 68, 1161 (1955)MATHCrossRefADSGoogle Scholar
  9. 9.
    T. Moriya, J. Magn. Magn. Mater. 100, 261 (1991)CrossRefADSGoogle Scholar
  10. 10.
    G.J. Conduit, Phys. Rev. A 82, 043604 (2010)CrossRefADSGoogle Scholar
  11. 11.
    G.J. Conduit, Phys. Rev. B 87, 184414 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Q. Gu, R.A. Klemm, Phys. Rev. A 68, 031604 (2003)CrossRefADSGoogle Scholar
  13. 13.
    E. Miyai, F.J. Ohkawa, Phys. Rev. B 61, 1357 (2000)CrossRefADSGoogle Scholar
  14. 14.
    J.H. Qin, X.L. Jian, Q. Gu, J. Phys.: Condens. Matter 24, 366007 (2012)Google Scholar
  15. 15.
    C.J. Tao, P.L. Wang, J.H. Qin, Q. Gu, Phys. Rev. B 78, 134403 (2008)CrossRefADSGoogle Scholar
  16. 16.
    D.J. Toms, Phys. Rev. B 50, 3120 (1994)MathSciNetCrossRefADSGoogle Scholar
  17. 17.
    D.J. Toms, Phys. Rev. D 51, 1886 (1995)CrossRefADSGoogle Scholar
  18. 18.
    G.B. Standen, D.J. Toms, Phys. Rev. E 60, 5275 (1999)CrossRefADSGoogle Scholar
  19. 19.
    X.L. Jian, J.H. Qin, Q. Gu, Phys. Lett. A 374, 2580 (2010)MATHCrossRefADSGoogle Scholar
  20. 20.
    X.L. Jian, J.H. Qin, Q. Gu, J. Phys.: Condens. Matter 23, 026003 (2011)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Science and Technology BeijingBeijingP.R. China
  2. 2.Department of PhysicsBeihang UniversityBeijingP.R. China

Personalised recommendations