Assessing the role of graphene content in the electromagnetic response of graphene polymer nanocomposites

  • Bibi Adohi
  • Bassel Haidar
  • Luis Costa
  • Vincent Laur
  • Christian Brosseau
Regular Article
Part of the following topical collections:
  1. Topical issue: Materials for Dielectric Applications

Abstract

We report experimental results from frequency-domain spectroscopy on graphene (GE) filled polyvinylidene difluoride trifluoroethylene P(VDF-TrFE). The dielectric properties of these polymer nanocomposites (GPN) were investigated over a broad range of frequency (from 102 Hz to a few GHz) and a broad range of temperature (from 150 K to 370 K) by using two measurement techniques: impedance spectroscopy and asymmetrical stripline. Care is needed in relating the GE content to the dielectric properties of GPN since the addition of GE to P(VDF-TrFE) can result in a nonmonotonic permittivity change. At low frequency (<1 MHz) the relaxation spectra is not Debye like but is characterized with a broad relaxation time distribution especially at low temperatures. This effect originates from the freezing process of dipoles and Maxwell-Wagner-Sillars (MWS) interfacial polarization. Additionally, a fit of the effective permittivity versus GE content suggests that our data are in accord with the two-exponent phenomenological percolation equation (TEPPE). These experimental results draw attention to the importance of the large surface area of the GE nanoparticles in controlling the interface between the GE flakes and the polymer phase.

References

  1. 1.
    F. Schwierz, Nat. Nanotech. 5, 487 (2010)CrossRefADSGoogle Scholar
  2. 2.
    G.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)CrossRefADSGoogle Scholar
  3. 3.
    E.P. Randviir, D.A.C. Browson, C.E. Banks, Mater. Today 17, 426 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimmey, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006) CrossRefADSGoogle Scholar
  5. 5.
    M. Aldrigo, M. Dragoman, D. Dragoman, J. Appl. Phys. 116, 114302 (2014) CrossRefADSGoogle Scholar
  6. 6.
    C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, X. Wang, Appl. Phys. 98, 072906 (2011) ADSGoogle Scholar
  7. 7.
    H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, ACS Appl. Mater. Interfaces 3, 918 (2011)CrossRefGoogle Scholar
  8. 8.
    X. Bai, Y. Zhai, Y. Zhang, J. Phys. Chem. C 115, 11673 (2011) CrossRefGoogle Scholar
  9. 9.
    H.S. Skulason, H.V. Nguyen, A. Guermoune, V. Sridharan, M. Siaj, C. Caloz, T. Szkopek, Appl. Phys. Lett. 99, 153504 (2011) CrossRefADSGoogle Scholar
  10. 10.
    Z. Wang, J. Luo, G.-L. Zhao, AIP Adv. 4, 017139 (2014) CrossRefADSGoogle Scholar
  11. 11.
    B.J.-P. Adohi, V. Laur, B. Haidar, C. Brosseau, Appl. Phys. Lett. 104, 082902 (2014) CrossRefADSGoogle Scholar
  12. 12.
    H.-S.P. Wong, D. Akinwande, Carbon Nanotube and Graphene Device Physics (Cambridge University Press, Cambridge, 2011) Google Scholar
  13. 13.
    X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao, D. Wang, Y. Yang, Y. Du, Nat. Sci. Rep. 3, 3421 (2014)Google Scholar
  14. 14.
    T. Sharifi, E. Gracia-Espino, H. Reza Barzegar, X. Jia, F. Nitze, G. Hu, P. Nordblad, C.-W. Tai, T. Wågberg, Nat. Commun. 4, 2319 (2013)CrossRefADSGoogle Scholar
  15. 15.
    Y.V. Bludov, N.M.R. Peres, M.I. Vasilevskiy, J. Opt. 15, 114004 (2013) CrossRefADSGoogle Scholar
  16. 16.
    W. Baaziz, L. Truong-Phuoc, C. Duong-Viet, G. Melinte, I. Janowska, V. Papaefthimiou, O. Ersen, S. Zafeiratos, D. Begin, S. Begin-Colin, C. Pham-Huu, J. Mater. Chem. A 2, 2690 (2014)CrossRefGoogle Scholar
  17. 17.
    P. Liu, Y. Huang, X. Zhang, Compos. Sci. Technol. 95, 107 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Jang, A. Zhamu, J. Mater. Sci. 43, 5092 (2008) CrossRefADSGoogle Scholar
  19. 19.
    T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010) CrossRefGoogle Scholar
  20. 20.
    J.R. Potts, D.R. Dreyer, C.W. Bielawski, R.S. Ruoff, Polymer 52, 5 (2011)CrossRefGoogle Scholar
  21. 21.
    H. Kim, A.A. Abdala, C.W. Macosko, Macromolecules 43, 6515 (2010) CrossRefADSGoogle Scholar
  22. 22.
    Y. Yang, W. Rigdon, X. Huang, X. Li, Nat. Sci. Rep. 3, 2086 (2013)ADSGoogle Scholar
  23. 23.
    C. Brosseau, J. Phys. D 39, 1277 (2006) CrossRefGoogle Scholar
  24. 24.
    V. Myroshnychenko, C. Brosseau, J. Appl. Phys. 103, 084112 (2008) CrossRefADSGoogle Scholar
  25. 25.
    C. Brosseau, A. Beroual, A. Boudida, J. Appl. Phys. 88, 7278 (2000) CrossRefADSGoogle Scholar
  26. 26.
    C. Brosseau, P. Talbot, IEEE Trans. Dielect. Electr. Insul. 11, 819 (2004)CrossRefGoogle Scholar
  27. 27.
    C. Brosseau, Computational Electromagnetics: From the Design of Heterostructures to the Modeling of Biostructures, in press Google Scholar
  28. 28.
    C. Brosseau, J. Ben Youssef, P. Talbot, A.-M. Konn, J. Appl. Phys. 93, 9243 (2003) CrossRefADSGoogle Scholar
  29. 29.
    J. Wu, D.S. McLachlan, Phys. Rev. B 58, 14880 (1998) CrossRefADSGoogle Scholar
  30. 30.
    D.S. McLachlan, G. Sauti, J. Nanomaterials, 2007, 30389 (2007) CrossRefGoogle Scholar
  31. 31.
    F. Amaral, L.C. Costa, M.A. Valente, F. Henry, J. Non-Cryst. Solids 355, 2160 (2009) CrossRefADSGoogle Scholar
  32. 32.
    E. Salahun , P. Queffelec, M. Le Floc’h, P. Gelin, IEEE Trans. Mag. 37, 2743 (2001) CrossRefADSGoogle Scholar
  33. 33.
    Y. Wang, S.-G. Luo, M. Lanagan, Q. Zhang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 56, 444 (2009)CrossRefGoogle Scholar
  34. 34.
    V. Bobnar, B. Vodopivec, A. Levstik, M. Kosec, B. Hilczer, Q.M. Zhang, Macromolecules 36, 4436 (2003) CrossRefADSGoogle Scholar
  35. 35.
    Q. Chen, K. Ren, B. Chu, Y. Liu, Q.-M. Zhang, V. Bobnar, A. Levstik, Ferroelectrics 354, 178 (2007) CrossRefGoogle Scholar
  36. 36.
    N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1991)Google Scholar
  37. 37.
    P. Murugaraj, D. Mainwaring, N. Mora-Huertas, J. Appl. Phys. 98, 054304 (2005) CrossRefADSGoogle Scholar
  38. 38.
    A. Hsu, H. Wang, K.K. Kim, J. Kong, T. Palacios, IEEE Electron. Device Lett. 32, 1008 (2011) CrossRefADSGoogle Scholar
  39. 39.
    M. Sahimi, Applications of Percolation Theory (Taylor and Francis, London, 1994)Google Scholar
  40. 40.
    C.W. Nan, Prog. Mater. Sci. 37, 1 (1993)CrossRefGoogle Scholar
  41. 41.
    L. Cui, X. Lu, D. Chao, H. Liu, Y. Li, C. Wang, Phys. Status Solidi A 208, 459 (2011) CrossRefADSGoogle Scholar
  42. 42.
    P. Fan, L. Wang, J. Yang, F. Chen, M. Zhong, Nanotechnology 23, 365702 (2012) CrossRefADSGoogle Scholar
  43. 43.
    Q. Li, Q.Z. Xue, L.Z. Gao, X.L. Gao, Q.B. Zheng, Compos. Sci. Technol. 68, 2290 (2008) CrossRefGoogle Scholar
  44. 44.
    A. Mdarhri, F. Carmona, P. Delhaes, C. Brosseau, J. Appl. Phys. 103, 054303 (2008) CrossRefADSGoogle Scholar
  45. 45.
    C. Brosseau, P. Talbot, Meas. Sci. Technol. 16, 1823 (2005) CrossRefADSGoogle Scholar
  46. 46.
    C. Brosseau, W. Ndong, A. Mdarhri, J. Appl. Phys. 104, 074907 (2008) CrossRefADSGoogle Scholar
  47. 47.
    D. Micheli, C. Apollo, R. Pastore, M. Marche, Compos. Sci. Technol. 70, 400 (2010)CrossRefGoogle Scholar
  48. 48.
    F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012) CrossRefADSGoogle Scholar
  49. 49.
    P. Saini, M. Arora, G. Gupta, B. Kumar Gupta, V. Nand Singh, V. Choudhary, Nanoscale 5, 4330 (2013)CrossRefADSGoogle Scholar
  50. 50.
    J. Ling, W. Zhai, W. Feng, B. Shen, J. Zhang, W. Zheng, ACS Appl. Mater. Interfaces 5, 2677 (2013)CrossRefGoogle Scholar
  51. 51.
    Y. Yang, M.C. Gupta, K.L. Dudley, W. Lawrence, Nano Lett. 5, 2131 (2005)CrossRefADSGoogle Scholar
  52. 52.
    J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Carbon 47, 922 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bibi Adohi
    • 1
  • Bassel Haidar
    • 2
  • Luis Costa
    • 3
  • Vincent Laur
    • 1
  • Christian Brosseau
    • 1
  1. 1.Université de Brest, Lab-STICCBrest Cedex 3France
  2. 2.Institut de Science des Matériaux de Mulhouse (IS2M)Mulhouse CedexFrance
  3. 3.I3N and Physics Department, University of AveiroAveiroPortugal

Personalised recommendations