Skip to main content
Log in

Variation of the critical percolation threshold with the method of preparation of the system

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the present work we propose a model in which one may vary at will the critical threshold p c of the percolation transition, by probing one candidate site (or bond) at a time. This is realised by implementing an attractive (repulsive) rule when building up the lattice, so that newly added sites are either attracted or repelled by the already existing clusters. We use a tuning parameter k, which is the number of attempts for a site to be occupied, leading to a continuous change of the percolation threshold while the new percolation process still belongs to the same universality class as the ordinary random percolation. We find that by increasing the value of the tuning parameter k, p c decreases until it reaches a minimum value where nucleation effects are now more pronounced than the percolation process. Such results are useful for the explanation of several new experimental systems that have recently appeared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1994)

  2. M. Sahimi, Applications of Percolation Theory (Taylor & Francis, London, 1994)

  3. D. Achlioptas, R.M. D’Souza, J. Spencer, Science 323, 1453 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. N. Bastas, K. Kosmidis, P. Argyrakis, Phys. Rev. E 84, 066112 (2011)

    Article  ADS  Google Scholar 

  5. W. Choi, S.H. Yook, Y. Kim, Phys. Rev. E 86, 051126 (2012)

    Article  ADS  Google Scholar 

  6. Y. Kim, Y.k. Yun, S.H. Yook, Phys. Rev. E 82, 061105 (2010)

    Article  ADS  Google Scholar 

  7. M.E.J. Newman, Phys. Rev. E 64, 016132 (2001)

    Article  ADS  Google Scholar 

  8. J.P. Onnela, J. Saramki, J. Hyvnen, G. Szab, D. Lazer, K. Kaski, J. Kertsz, A.L. Barabsi, Proc. Natl. Acad. Sci. 104, 7332 (2007)

    Article  ADS  Google Scholar 

  9. H.D. Rozenfeld, L.K. Gallos, H.A. Makse, Eur. Phys. J. B 75, 305 (2010)

    Article  ADS  MATH  Google Scholar 

  10. T. Bohman, A. Frieze, N. Wormald, Random Structures and Algorithms 25, 432 (2004)

    Article  MathSciNet  Google Scholar 

  11. J. Adler, Physica A 171, 453 (1991)

    Article  ADS  Google Scholar 

  12. N.A.M. Araújo, P. Grassberger, B. Kahng, K.J. Schrenk, R.M. Ziff, Eur. Phys. J. Special Topics 223, 2307 (2014)

    Article  ADS  Google Scholar 

  13. N. Bastas, P. Giazitzidis, M. Maragakis, K. Kosmidis, Physica A 407, 54 (2014)

    Article  ADS  Google Scholar 

  14. P. Giazitzidis, P. Argyrakis, Phys. Rev. E 88, 024801 (2013)

    Article  ADS  Google Scholar 

  15. J. Nagler, A. Levina, M. Timme, Nat. Phys. 7, 265 (2011)

    Article  Google Scholar 

  16. O. Riordan, L. Warnke, Science 333, 322 (2011)

    Article  ADS  Google Scholar 

  17. N.A.M. Araújo, J.S. Andrade, R.M. Ziff, H.J. Herrmann, Phys. Rev. Lett. 106, 095703 (2011)

    Article  ADS  Google Scholar 

  18. S. Cho, Y.S. Hwang, J. Herrmann, H.B. Kahng, Science 339, 1185 (2013)

    Article  ADS  Google Scholar 

  19. S. Kim, Y.S. Cho, N.A.M. Araújo, B. Kahng, Phys. Rev. E 89, 032113 (2014)

    Article  ADS  Google Scholar 

  20. J. Sandler, J. Kirk, I. Kinloch, M. Shaffer, A. Windle, Polymer 44, 5893 (2003)

    Article  Google Scholar 

  21. A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, J. Marêché, Phys. Rev. B 53, 6209 (1996)

    Article  ADS  Google Scholar 

  22. S. Munson Mcgee, Phys. Rev. B 43, 3331 (1991)

    Article  ADS  Google Scholar 

  23. J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, A. Windle, Polymer 40, 5967 (1999)

    Article  Google Scholar 

  24. B. Kilbride, J. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W. Blau, J. Appl. Phys. 92, 4024 (2002)

    Article  ADS  Google Scholar 

  25. M.E.J. Newman, R.M. Ziff, Phys. Rev. Lett. 85, 4104 (2000)

    Article  ADS  Google Scholar 

  26. N. Bastas, K. Kosmidis, P. Giazitzidis, M. Maragakis, Phys. Rev. E 90, 062101 (2014)

    Article  ADS  Google Scholar 

  27. P. Grassberger, C. Christensen, G. Bizhani, S.W. Son, M. Paczuski, Phys. Rev. Lett. 106, 225701 (2011)

    Article  ADS  Google Scholar 

  28. R.A. da Costa, S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E 89, 042148 (2014)

    Article  ADS  Google Scholar 

  29. R.A. da Costa, S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E 90, 022145 (2014)

    Article  ADS  Google Scholar 

  30. R.M. Ziff, Phys. Rev. E 82, 051105 (2010)

    Article  ADS  Google Scholar 

  31. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos Argyrakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giazitzidis, P., Avramov, I. & Argyrakis, P. Variation of the critical percolation threshold with the method of preparation of the system. Eur. Phys. J. B 88, 331 (2015). https://doi.org/10.1140/epjb/e2015-60322-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60322-0

Keywords

Navigation