Charge localization in a layer induced by electron-phonon interaction: application to transient polaron formation

Regular Article

Abstract

We describe electron transfer and localization in a finite two-dimensional transporting layer (15 × 15) using a tight binding Hamiltonian where each site is coupled to phonons. For a narrow electronic band, a polaron is formed with a population that peaks in the middle of the layer and exhibits a concomitant energy lowering. A “local defect” can be simulated by lowering or raising the corresponding site energy. As an example, if we put the defect in one corner, the consequence is that the electron population builds up a polaron which is repelled from this region. The model has been applied to describe the experimentally observed real time polaron formation process in organic layers and in particular in the surface bands of ice-covered metal. We simulate the polaron formation, population distribution and energy relaxation in time. We also investigate the effect of local fluctuations on polaron formation. The formalism can be generalized to excitonic trapping, and has many potential applications.

Keywords

Mesoscopic and Nanoscale Systems 

Supplementary material

10051_2015_1647_MOESM1_ESM.pdf (374 kb)
Supplementary material, approximately 373 KB.

References

  1. 1.
    R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811, 265 (1985)CrossRefGoogle Scholar
  2. 2.
    P.F. Barbara, T.J. Meyer, M.A. Ratner, J. Phys. Chem. 100, 13148 (1996)CrossRefGoogle Scholar
  3. 3.
    M. Bixon, J. Jortner, Adv. Chem. Phys. 106, 35 (1999)Google Scholar
  4. 4.
    E.A. Weiss et al., J. Chem. Phys. 124, 074501 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Y.A. Berlin et al., Top. Curr. Chem. 237, 1 (2004)Google Scholar
  6. 6.
    A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    C. Joachim, M.A. Ratner, Nanotechnology 15, 1065 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    A. Nitzan, M.A. Ratner, Science 300, 1384 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    A. Nitzan, Chemical Dynamics in condensed Phases (Oxford University Press, Oxford, 2006)Google Scholar
  10. 10.
    A.P. Horsfield et al., J. Phys: Condens. Matter 16, 3609 (2004)ADSGoogle Scholar
  11. 11.
    J.C. Cuevas, E. Scheer, Molecular Electronics: an Introduction to Theory and Experiment (World Scientific Pub Co Inc, New Jersey, 2010)Google Scholar
  12. 12.
    Introduction to Molecular Electronics, edited by M.C. Petty, M.R. Bryce, D. Bloor (Oxford University Press, New York, 1995)Google Scholar
  13. 13.
    R. Gerber, M. Ratner, J. Phys. Chem. 92, 3252 (1988)CrossRefGoogle Scholar
  14. 14.
    P. Hänggi, M. Ratner, S. Yaliraki, Chem. Phys. 281, 111 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    N.-H. Ge et al., Science 279, 202 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    U. Höfer, Science 279, 190 (1998)CrossRefGoogle Scholar
  17. 17.
    P. Szymanski, S. Garrett-Roe, C.B. Harris, Prog. Surface Sci. 78, 1 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    P.T. Snee, S. Garrett-Roe, C.B. Harris, J. Phys. Chem. B 107, 13608 (2003)CrossRefGoogle Scholar
  19. 19.
    C. Gahl, U. Bovensiepen, C. Frischkorn, M. Wolf, Phys. Rev. Lett. 89, 107402 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    A.J. Heeger, S. Kivelson, J.R. Schreiffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    D. Golež, J. Bonča, L. Vidmar, S.A. Trugman, Phys. Rev. Lett. 109, 236402 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    T. Holstein, Ann. Phys. 8, 325 (1959)MATHADSCrossRefGoogle Scholar
  23. 23.
    D. Emin, Adv. Phys. 22, 57 (1973)ADSCrossRefGoogle Scholar
  24. 24.
    Y.A. Firsov, Polarons (Nauka, Moscow, 1975)Google Scholar
  25. 25.
    G.L. Sewell, Polarons and Excitons (Plenum Press, New York, 1963)Google Scholar
  26. 26.
    D. Emin, A.M. Kriman, Phys. Rev. B 34, 7278 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    D. Emin, Monatsh. Chem. 144, 3 (2012)CrossRefGoogle Scholar
  28. 28.
    G. Kopidakis, C.M. Soukoulis, E.N. Economou, Phys. Rev. B 51, 15038 (1995)ADSCrossRefGoogle Scholar
  29. 29.
    D. Emin, Polarons (Cambridge University Press, Cambridge, 2012)Google Scholar
  30. 30.
    J. Staḧle et al., J. Phys. Chem. B 110, 9637 (2006)CrossRefGoogle Scholar
  31. 31.
    K.J. Schafer, J.D. Garcia, N.-H. Kwong, Phys. Rev. B 36, 1872 (1987)ADSCrossRefGoogle Scholar
  32. 32.
    J.C. Tully, J. Chem. Phys. 93, 1061 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    R.B. Gerber, M. Ratner, Chem. Phys. Lett. 68, 195 (1979)ADSCrossRefGoogle Scholar
  34. 34.
    R.B. Gerber, M. Ratner, Adv. Chem. Phys. 70, 97 (1988)Google Scholar
  35. 35.
    V.D. Lakhno, J. Biol. Phys. 31, 145 (2005)CrossRefGoogle Scholar
  36. 36.
    V.D. Lakhno, Phys. Chem. Chem. Phys. 4, 2246 (2002)CrossRefGoogle Scholar
  37. 37.
    M.E. Casida, B. Natarajan, T. Deutsch, Fundamentals of Time-Dependent Density Functional Theory, Lecture Notes in Physics, edited by M. Marques et al. (Springer, Berlin, 2011), Vol. 837Google Scholar
  38. 38.
    X. Andrade et al., J. Chem. Theory Comput. 5, 728 (2009)CrossRefGoogle Scholar
  39. 39.
    J. Ren, N. Vukmirovic, L.-W. Wang, Phys. Rev. B 87, 205117 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    G.-Q. Li, B. Movaghar, A. Nitzan, M.A. Ratner, J. Chem. Phys. 138, 044112 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    G.-Q. Li, B. Movaghar, M.A. Ratner, Phys. Rev. B 87, 094302 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    M. Galperin, A. Nitzan, Phys. Rev. Lett. 95, 206802 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    F.D. Lewis et al., J. Am. Chem. Soc. 128, 791 (2006)CrossRefGoogle Scholar
  44. 44.
    S.S. Skourtis, D.H. Waldeck, D.N. Beratan, Annu. Rev. Phys. Chem. 61, 461 (2010)CrossRefGoogle Scholar
  45. 45.
    P.P. Jha, P. Guyot-Sionnest, J. Phys. Chem. C 111, 15440 (2007)CrossRefGoogle Scholar
  46. 46.
    C. Wang, M. Shim, P. Guyot-Sionnest, Appl. Phys. Lett. 80, 4 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    C. McClory et al., Eur. Polym. J. 46, 854 (2010)CrossRefGoogle Scholar
  48. 48.
    S.-Y. Zhao, K. Chan, A. Yelon, T. Veres, Adv. Mater. 19, 3004 (2007)CrossRefGoogle Scholar
  49. 49.
    Y. Yao, Y. Zhao, J. Chem. Phys. 139, 014102 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    Y. Zhao, G.-Q. Li, J. Sun, W.-H. Wang, J. Chem. Phys. 129, 124114 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    X. Zheng et al., J. Chem. Phys. 130, 164708 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of ChemistryNorthwestern UniversityEvanstonUSA

Personalised recommendations