Skip to main content
Log in

Tunability of absorption with temperature in the terahertz regime based on photonic crystals containing graphene and defect InSb layers

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We show that the absorption of graphene layers included in InSb layers as the defect of photonic crystals can be significantly enhanced. This effect is due to the field localization in the defect layer at particular wavelengths. For normal incidence, we first consider the case at which the InSb-graphene layer-InSb layers are sandwiched between two photonic crystals with the same and different numbers of unit cells at each side. It is demonstrated that the position of absorption peak of the graphene layer can be tuned by varying the ambient temperature in the terahertz regime under normal incidence. The absorption peak shifts toward longer wavelengths with decreasing temperature. The values of absorption peaks also depend on the temperature. It is demonstrated that complete absorption can be obtained in this structure at specific temperatures and optimized number of unit cells. Our results also indicate that the distance between absorption peaks decreases while their numbers increase with increasing the thickness of InSb layers at a fixed temperature. The absorption of graphene layer depends on its position in the structure and incident angle. Tunable absorption with temperature is also studied in the vicinity of a larger wavelength for both TM and TE polarizations. By including the absorption of InSb layer in the calculations, it is shown that the contribution of InSb and graphene to absorption depends on temperature and thickness of InSb layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  2. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  3. J. Nilsson, A.H.C. Neto, F. Guinea, N.M.R. Peres, Phys. Rev. Lett. 97, 266801 (2006)

    Article  ADS  Google Scholar 

  4. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  5. Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)

    Article  ADS  Google Scholar 

  6. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nat. Nanotechnol. 6, 630 (2011)

    Article  ADS  Google Scholar 

  7. A. Vakil, N. Engheta, Science 332, 1291 (2011)

    Article  ADS  Google Scholar 

  8. H. Yan, X. Li, B. Chandra, G. Tulevski, Y. Wu, M. Freitag, W. Zhu, P. Avouris, F. Xia, Nat. Nanotechnol. 7, 330 (2012)

    Article  ADS  Google Scholar 

  9. F.H.L. Koppens, D.E. Chang, F.J. García de Abajo, Nano Lett. 11, 3370 (2011)

    Article  Google Scholar 

  10. X. Wang, L. Zhi, K. Mullen, Nano Lett. 8, 323 (2007)

    Article  ADS  Google Scholar 

  11. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y.I. Song, Y.-J. Kim, K.S. Kim, B. Ozyilmaz, J.-H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010)

    Article  ADS  Google Scholar 

  12. S. Thongrattanasiri, F.H.L. Koppens, F.J. García de Abajo, Phys. Rev. Lett. 108, 047401 (2012)

    Article  ADS  Google Scholar 

  13. J.-T. Liu, N.-H. Liu, J. Li, X.J. Li, J.-H. Huang, Appl. Phys. Lett. 101, 052104 (2012)

    Article  ADS  Google Scholar 

  14. M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A.M. Andrews, W. Schrenk, G. Strasser, T. Mueller, Nano Lett. 12, 2773 (2012)

    Article  Google Scholar 

  15. M.A. Vincenti, D. de Ceglia, M. Grande, A.D. Orazio, M. Scalora, arXiv:1306.4607[physics.optics] (2013)

  16. Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J. García de Abajo, P. Nordlander, X. Zhu, N.J. Halas, Nano Lett. 14, 299 (2014)

    Article  Google Scholar 

  17. B. Zhu, G. Ren, S. Zheng, Z. Lin, S. Jian, Opt. Commun. 308, 204 (2013)

    Article  ADS  Google Scholar 

  18. A. Andryieuski, A.V. Lavrinenko, Opt. Express 21, 9144 (2013)

    Article  ADS  Google Scholar 

  19. Xin-Hua Deng, Jiang-Tao Liu, Jiren Yuan, Tong-Biao Wang, Nian-Hua Liu, Opt. Express 22, 30177 (2014)

    Article  ADS  Google Scholar 

  20. L. Qi, Z. Yang, F. Lan, X. Gao, Z. Shi, Phys. Plasmas 17, 042501 (2010)

    Article  ADS  Google Scholar 

  21. X.K. Kong, S.B. Liu, H.F. Zhang, S.-Y. Wang, B.R. Bian, Y. Dai, J. Select. Topics Quantum Electron. 19, 8401407 (2013)

    Article  Google Scholar 

  22. A.C. Neto, F. Guinea, N. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  23. K. Ziegler, Phys. Rev. Lett. 97, 266802 (2006)

    Article  ADS  Google Scholar 

  24. G.W. Hanson, J. Appl. Phys. 104, 084314 (2008)

    Article  ADS  Google Scholar 

  25. X. Dai, Y. Xiang, S. Wen, H. He, J. Appl. Phys. 109, 053104 (2011)

    Article  ADS  Google Scholar 

  26. C. Liu, J. Ye, Y. Zhang, Opt. Commun. 283, 865 (2010)

    Article  ADS  Google Scholar 

  27. J. Zhu, J. Han, Z. Tian, J. Gu, Z. Chen, W. Zhang, Opt. Commun. 284, 3129 (2011)

    Article  ADS  Google Scholar 

  28. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Nano Lett. 9, 30 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Ghasempour Ardakani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardakani, A.G. Tunability of absorption with temperature in the terahertz regime based on photonic crystals containing graphene and defect InSb layers. Eur. Phys. J. B 88, 166 (2015). https://doi.org/10.1140/epjb/e2015-60233-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60233-0

Keywords

Navigation