Abstract
The thermoelectric transport in the device composed of a central nanoscopic system in contact with two electrodes and subject to the external magnetic field of Zeeman type has been studied. The device can support pure spin current in the electrodes and may serve as a source of the temperature induced spin currents with possible applications in spintronics. The system may also be used as an energy harvester. We calculate its thermodynamic efficiency η and the power output P. The maximal efficiency of the device reaches the Carnot value when the device works reversibly but with the vanishing power. The interactions between carriers diminish the maximal efficiency of the device, which under the constant load drops well below the Carnot limit but may exceed the Curzon-Ahlborn limit. While the effect of intradot Coulomb repulsion on η depends on the parameters, the interdot/interlevel interaction strongly diminishes the device efficiency.
References
J.P. Heremans, C.M. Thrush, D.T. Morelli, Phys. Rev. B 70, 115334 (2004)
J.P. Heremans, Acta Phys. Pol. A 108, 609 (2005)
G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. 93, 7436 (1996)
A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Nature 451, 168 (2008)
P. Murphy, S. Mukerjee, J. Moore, Phys. Rev. B 78, 161406 (2008)
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Nature 455, 778 (2008)
T. Dietl, in Semiconductor Spintronics, Lecture Notes in Physics (Springer, Berlin, 2007), Vol. 712, pp. 1–46
W.J.M. Naber, S. Faez, W.G. van der Wiel, J. Phys. D 40, 205 (2007)
J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, I. Zutic, Acta Phys. Slovaca 57, 565 (2007)
I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)
L. Bogani, W. Wernsdorfer, Nat. Mater. 7, 179 (2008)
Y. Dubi, M. Di Ventra, Phys. Rev. B 79, 081302 (2009)
R. Świrkowicz, M. Wierzbicki, J. Barnaś, Phys. Rev. B 80, 195409 (2009)
R.-Q. Wang, L. Sheng, R. Shen, B. Wang, D.Y. Xing, Phys. Rev. Lett. 105, 057202 (2010)
S. Russo, M. Kroug, T.M. Klapwijk, A.F. Morpurgo, Phys. Rev. Lett. 95, 027002 (2005)
J.L. Webb, B.J. Hickey, G. Burnell, Phys. Rev. B 86, 054525 (2012)
P. Machon, M. Eschrig, W. Belzig, Phys. Rev. Lett. 110, 047002 (2013)
M.M. Wysokiński, Acta Phys. Pol. A 122, 758 (2012)
M.M. Wysokiński, J. Spalek, J. Appl. Phys. 113, 163905 (2013)
J. Ren, J. Fransson, J.-X. Zhu, Phys. Rev. B 89, 214407 (2014)
L.I. Glazman, V. Chandrasekhar, Europhys. Lett. 19, 623 (1992)
R. Ziegler, C. Bruder, H. Schoeller, Phys. Rev. B 62, 1961 (2000)
V.N. Golovach, D. Loss, Phys. Rev. B 69, 245327 (2004)
T. Hayashi, T. Fujisawa, H.D. Cheong, Y.H. Jeong, Y. Hirayama, Phys. Rev. Lett. 91, 226804 (2003)
L. Oroszlany, A. Kormanyos, J. Koltai, J. Cserti, C.J. Lambert, Phys. Rev. B 76, 045318 (2007)
B.R. Bułka, T. Kostyrko, M. Tolea, I.V. Dinu, J. Phys.: Condens. Matter 19, 255211 (2007)
F. Bodoky, W. Belzig, C. Bruder, Phys. Rev. B 77, 035302 (2008)
I. Weymann, Phys. Rev. B 78, 045310 (2008)
M. Wierzbicki, R. Swirkowicz, Phys. Rev. B 84, 075410 (2011)
P. Trocha, J. Barnaś, Phys. Rev. B 85, 085408 (2012)
M.B. Tagani, H.R. Soleimani, Solid State Commun. 152, 914 (2012)
M.B. Tagani, H.R. Soleimani, J. Appl. Phys. 112, 103719 (2012)
C. Jiang, W.J. Gong, Y.S. Zheng, Eur. Phys. J. B 85, 364 (2012)
G. Rajput, P.K. Ahluwalia, K.C. Sharma, Physica B 406, 3328 (2011)
T. Rejec, R. Żitko, J. Mravlje, A. Ramŝak, Phys. Rev. B 85, 085117 (2012)
X.F. Yang, Y.S. Liu, J. Appl. Phys. 113, 164310 (2013)
X.K. Hong, Y.S. Liu, J.F. Feng, J.H. Chu, J. Appl. Phys. 114, 144309 (2013)
F. Chi, J. Zheng, X.-D. Lu, K.-C. Zhang, Phys. Lett. A 375, 1352 (2011)
S. Lipiński, D. Krychowski, Phys. Rev. B 81, 115327 (2010)
J.Y. Luo, H.J. Jiao, B.T. Xiong, X.-L. He, C. Wang, J. Phys.: Condens. Matter 25, 155304 (2013)
L. Ai-Xian, D. Su-Qing, Chin. Phys. B 21, 117201 (2012)
D.-K. Fang, S.-Q. Wu, C.-Y. Zou, G.-P. Zhao, Chin. Phys. Lett. 29, 037303 (2012)
W. Qiang, X. Hai-Qing, J. Hu-Jun, L. Zhi-Jian, N. Yi-Hang, Chin. Phys. B 21, 117310 (2012)
W.-J. Gong, C. Jiang, X. Sui, A. Du, J. Phys. Soc. Jpn 81, 104601 (2012)
J. Zheng, F. Chi, Y. Guo, J. Phys.: Condens. Matter 24, 265301 (2012)
J. Azema, A.-M. Dare, S. Schäfer, P. Lombardo, Phys. Rev. B 86, 075303 (2012)
G. Gomez-Silva, O. Avalos-Ovando, M.L. Ladron de Guevara, P.A. Orellana, J. Appl. Phys. 111, 053704 (2012)
Z.C. Yang, Q.F. Sun, X.C. Xie, J. Phys.: Condens. Matter 26, 045302 (2014)
A. Ozaeta, P. Virtanen, F.S. Bergeret, T.T. Heikkila, Phys. Rev. Lett. 112, 057001 (2014)
N.A. Zimbovskaya, J. Chem. Phys. 140, 104706 (2014)
I. Weymann, P. Trocha, Phys. Rev. B 89, 115305 (2014)
F. Chi, J. Zheng, X.-D. Lu, K.-C. Zhang, Phys. Lett. A 375, 1352 (2011)
J.Y. Luo, H.J. Jiao, Y. Shen, G. Cen, X.-L. He, C. Wang, J. Phys.: Condens. Matter 23, 145301 (2011)
J.A. Andrade, P.S. Cornaglia, A.A. Aligia, Phys. Rev. B 89, 115110 (2014)
S. Sharmin, K. Muraki, T. Fujisawa, Phys. Rev. B 89, 115315 (2014)
M.R. Graber, M. Weiss, D. Keller, S. Oberholzer, C. Schonenberger, Ann. Phys. 16, 672 (2007)
M.R. Graber, W.A. Coish, C. Hoffmann, M. Weiss, J. Furer, S. Oberholzer, D. Loss, C. Schonenberger, Phys. Rev. B 74, 075427 (2006)
M. Pioro-Ladriere, R. Abolfath, P. Zawadzki, J. Lapointe, S.A. Studenikin, A.S. Sachrajda, P. Hawrylak, Phys. Rev. B 72, 125307 (2005)
L. DiCarlo, H.J. Lynch, A.C. Johnson, L.I. Childress, K. Crockett, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 92, 226801 (2004)
S.J. Chorley, M.R. Galpin, F.W. Jayatilaka, C.G. Smith, D.E. Logan, M.R. Buitelaar, Phys. Rev. Lett. 109, 156804 (2012)
S. Amasha, A.J. Keller, I.G. Rau, A. Carmi, J.A. Katine, H. Shtrikman, Y. Oreg, D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)
A.J. Keller, S. Amasha, I. Weymann, C.P. Moca, I.G. Rau, J.A. Katine, H. Shtrikman, G. Zarnd, D. Goldhaber-Gordon, Nat. Phys. 10, 145 (2013)
W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002)
D.A. Bagrets, Yu.V. Nazarov, Phys. Rev. B 67, 085316 (2003)
F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1974)
H. Bruus, K. Flensberg, in Many-body Quantum Theory in Condensed Matter Physics (Oxford University Press, New York, 2004), Chap. 10
G.D. Mahan, in Many-Particle Physics (Plenum Press, New York, London, 1981), Chap. 3.8
G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat, Int. Mater. Rev. 48, 45 (2003)
M. Cutler, N.F. Mott, Phys. Rev. 181, 1336 (1969)
B. Muralidharan, M. Grifoni, Phys. Rev. B 85, 155423 (2012)
M. Esposito, K. Lindenberg, C. Van den Broeck, Eur. Phys. Lett. 85, 60010 (2009)
M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)
K. Yazawa, A. Shakouri, J. Appl. Phys. 111, 024509 (2012)
G. Benenti, G. Casati, J. Wang, Phys. Rev. Lett. 110, 070604 (2013)
N. Nakpathomkun, H.Q. Xu, H. Linke, Phys. Rev. B 82, 235428 (2010)
U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)
M. Krawiec, K.I. Wysokiński, Phys. Rev. B 73, 075307 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is published with open access at Springerlink.com
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Szukiewicz, B., Wysokiński, K.I. Quantum dot as spin current generator and energy harvester. Eur. Phys. J. B 88, 112 (2015). https://doi.org/10.1140/epjb/e2015-60156-8
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2015-60156-8
Keywords
- Mesoscopic and Nanoscale Systems