Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. The European Physical Journal B
  3. Article

Quantum dot as spin current generator and energy harvester

  • Regular Article
  • Open Access
  • Published: 04 May 2015
  • volume 88, Article number: 112 (2015)
Download PDF

You have full access to this open access article

The European Physical Journal B Aims and scope Submit manuscript
Quantum dot as spin current generator and energy harvester
Download PDF
  • Barbara Szukiewicz1 &
  • Karol I. Wysokiński1 
  • 1099 Accesses

  • 11 Citations

  • 45 Altmetric

  • 6 Mentions

  • Explore all metrics

  • Cite this article

Abstract

The thermoelectric transport in the device composed of a central nanoscopic system in contact with two electrodes and subject to the external magnetic field of Zeeman type has been studied. The device can support pure spin current in the electrodes and may serve as a source of the temperature induced spin currents with possible applications in spintronics. The system may also be used as an energy harvester. We calculate its thermodynamic efficiency η and the power output P. The maximal efficiency of the device reaches the Carnot value when the device works reversibly but with the vanishing power. The interactions between carriers diminish the maximal efficiency of the device, which under the constant load drops well below the Carnot limit but may exceed the Curzon-Ahlborn limit. While the effect of intradot Coulomb repulsion on η depends on the parameters, the interdot/interlevel interaction strongly diminishes the device efficiency.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J.P. Heremans, C.M. Thrush, D.T. Morelli, Phys. Rev. B 70, 115334 (2004)

    Article  ADS  Google Scholar 

  2. J.P. Heremans, Acta Phys. Pol. A 108, 609 (2005)

    Google Scholar 

  3. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. 93, 7436 (1996)

    Article  ADS  Google Scholar 

  4. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  5. P. Murphy, S. Mukerjee, J. Moore, Phys. Rev. B 78, 161406 (2008)

    Article  ADS  Google Scholar 

  6. K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Nature 455, 778 (2008)

    Article  ADS  Google Scholar 

  7. T. Dietl, in Semiconductor Spintronics, Lecture Notes in Physics (Springer, Berlin, 2007), Vol. 712, pp. 1–46

  8. W.J.M. Naber, S. Faez, W.G. van der Wiel, J. Phys. D 40, 205 (2007)

    Article  ADS  Google Scholar 

  9. J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, I. Zutic, Acta Phys. Slovaca 57, 565 (2007)

    Article  ADS  Google Scholar 

  10. I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004)

    Article  ADS  Google Scholar 

  11. L. Bogani, W. Wernsdorfer, Nat. Mater. 7, 179 (2008)

    Article  ADS  Google Scholar 

  12. Y. Dubi, M. Di Ventra, Phys. Rev. B 79, 081302 (2009)

    Article  ADS  Google Scholar 

  13. R. Świrkowicz, M. Wierzbicki, J. Barnaś, Phys. Rev. B 80, 195409 (2009)

    Article  ADS  Google Scholar 

  14. R.-Q. Wang, L. Sheng, R. Shen, B. Wang, D.Y. Xing, Phys. Rev. Lett. 105, 057202 (2010)

    Article  ADS  Google Scholar 

  15. S. Russo, M. Kroug, T.M. Klapwijk, A.F. Morpurgo, Phys. Rev. Lett. 95, 027002 (2005)

    Article  ADS  Google Scholar 

  16. J.L. Webb, B.J. Hickey, G. Burnell, Phys. Rev. B 86, 054525 (2012)

    Article  ADS  Google Scholar 

  17. P. Machon, M. Eschrig, W. Belzig, Phys. Rev. Lett. 110, 047002 (2013)

    Article  ADS  Google Scholar 

  18. M.M. Wysokiński, Acta Phys. Pol. A 122, 758 (2012)

    Google Scholar 

  19. M.M. Wysokiński, J. Spalek, J. Appl. Phys. 113, 163905 (2013)

    Article  ADS  Google Scholar 

  20. J. Ren, J. Fransson, J.-X. Zhu, Phys. Rev. B 89, 214407 (2014)

    Article  ADS  Google Scholar 

  21. L.I. Glazman, V. Chandrasekhar, Europhys. Lett. 19, 623 (1992)

    Article  ADS  Google Scholar 

  22. R. Ziegler, C. Bruder, H. Schoeller, Phys. Rev. B 62, 1961 (2000)

    Article  ADS  Google Scholar 

  23. V.N. Golovach, D. Loss, Phys. Rev. B 69, 245327 (2004)

    Article  ADS  Google Scholar 

  24. T. Hayashi, T. Fujisawa, H.D. Cheong, Y.H. Jeong, Y. Hirayama, Phys. Rev. Lett. 91, 226804 (2003)

    Article  ADS  Google Scholar 

  25. L. Oroszlany, A. Kormanyos, J. Koltai, J. Cserti, C.J. Lambert, Phys. Rev. B 76, 045318 (2007)

    Article  ADS  Google Scholar 

  26. B.R. Bułka, T. Kostyrko, M. Tolea, I.V. Dinu, J. Phys.: Condens. Matter 19, 255211 (2007)

    ADS  Google Scholar 

  27. F. Bodoky, W. Belzig, C. Bruder, Phys. Rev. B 77, 035302 (2008)

    Article  ADS  Google Scholar 

  28. I. Weymann, Phys. Rev. B 78, 045310 (2008)

    Article  ADS  Google Scholar 

  29. M. Wierzbicki, R. Swirkowicz, Phys. Rev. B 84, 075410 (2011)

    Article  ADS  Google Scholar 

  30. P. Trocha, J. Barnaś, Phys. Rev. B 85, 085408 (2012)

    Article  ADS  Google Scholar 

  31. M.B. Tagani, H.R. Soleimani, Solid State Commun. 152, 914 (2012)

    Article  ADS  Google Scholar 

  32. M.B. Tagani, H.R. Soleimani, J. Appl. Phys. 112, 103719 (2012)

    Article  ADS  Google Scholar 

  33. C. Jiang, W.J. Gong, Y.S. Zheng, Eur. Phys. J. B 85, 364 (2012)

    Article  ADS  Google Scholar 

  34. G. Rajput, P.K. Ahluwalia, K.C. Sharma, Physica B 406, 3328 (2011)

    Article  ADS  Google Scholar 

  35. T. Rejec, R. Żitko, J. Mravlje, A. Ramŝak, Phys. Rev. B 85, 085117 (2012)

    Article  ADS  Google Scholar 

  36. X.F. Yang, Y.S. Liu, J. Appl. Phys. 113, 164310 (2013)

    Article  ADS  Google Scholar 

  37. X.K. Hong, Y.S. Liu, J.F. Feng, J.H. Chu, J. Appl. Phys. 114, 144309 (2013)

    Article  ADS  Google Scholar 

  38. F. Chi, J. Zheng, X.-D. Lu, K.-C. Zhang, Phys. Lett. A 375, 1352 (2011)

    Article  ADS  Google Scholar 

  39. S. Lipiński, D. Krychowski, Phys. Rev. B 81, 115327 (2010)

    Article  ADS  Google Scholar 

  40. J.Y. Luo, H.J. Jiao, B.T. Xiong, X.-L. He, C. Wang, J. Phys.: Condens. Matter 25, 155304 (2013)

    ADS  Google Scholar 

  41. L. Ai-Xian, D. Su-Qing, Chin. Phys. B 21, 117201 (2012)

    Article  ADS  Google Scholar 

  42. D.-K. Fang, S.-Q. Wu, C.-Y. Zou, G.-P. Zhao, Chin. Phys. Lett. 29, 037303 (2012)

    Article  ADS  Google Scholar 

  43. W. Qiang, X. Hai-Qing, J. Hu-Jun, L. Zhi-Jian, N. Yi-Hang, Chin. Phys. B 21, 117310 (2012)

    Article  ADS  Google Scholar 

  44. W.-J. Gong, C. Jiang, X. Sui, A. Du, J. Phys. Soc. Jpn 81, 104601 (2012)

    Article  ADS  Google Scholar 

  45. J. Zheng, F. Chi, Y. Guo, J. Phys.: Condens. Matter 24, 265301 (2012)

    ADS  Google Scholar 

  46. J. Azema, A.-M. Dare, S. Schäfer, P. Lombardo, Phys. Rev. B 86, 075303 (2012)

    Article  ADS  Google Scholar 

  47. G. Gomez-Silva, O. Avalos-Ovando, M.L. Ladron de Guevara, P.A. Orellana, J. Appl. Phys. 111, 053704 (2012)

    Article  ADS  Google Scholar 

  48. Z.C. Yang, Q.F. Sun, X.C. Xie, J. Phys.: Condens. Matter 26, 045302 (2014)

    Google Scholar 

  49. A. Ozaeta, P. Virtanen, F.S. Bergeret, T.T. Heikkila, Phys. Rev. Lett. 112, 057001 (2014)

    Article  ADS  Google Scholar 

  50. N.A. Zimbovskaya, J. Chem. Phys. 140, 104706 (2014)

    Article  ADS  Google Scholar 

  51. I. Weymann, P. Trocha, Phys. Rev. B 89, 115305 (2014)

    Article  ADS  Google Scholar 

  52. F. Chi, J. Zheng, X.-D. Lu, K.-C. Zhang, Phys. Lett. A 375, 1352 (2011)

    Article  ADS  Google Scholar 

  53. J.Y. Luo, H.J. Jiao, Y. Shen, G. Cen, X.-L. He, C. Wang, J. Phys.: Condens. Matter 23, 145301 (2011)

    ADS  Google Scholar 

  54. J.A. Andrade, P.S. Cornaglia, A.A. Aligia, Phys. Rev. B 89, 115110 (2014)

    Article  ADS  Google Scholar 

  55. S. Sharmin, K. Muraki, T. Fujisawa, Phys. Rev. B 89, 115315 (2014)

    Article  ADS  Google Scholar 

  56. M.R. Graber, M. Weiss, D. Keller, S. Oberholzer, C. Schonenberger, Ann. Phys. 16, 672 (2007)

    Article  Google Scholar 

  57. M.R. Graber, W.A. Coish, C. Hoffmann, M. Weiss, J. Furer, S. Oberholzer, D. Loss, C. Schonenberger, Phys. Rev. B 74, 075427 (2006)

    Article  ADS  Google Scholar 

  58. M. Pioro-Ladriere, R. Abolfath, P. Zawadzki, J. Lapointe, S.A. Studenikin, A.S. Sachrajda, P. Hawrylak, Phys. Rev. B 72, 125307 (2005)

    Article  ADS  Google Scholar 

  59. L. DiCarlo, H.J. Lynch, A.C. Johnson, L.I. Childress, K. Crockett, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 92, 226801 (2004)

    Article  ADS  Google Scholar 

  60. S.J. Chorley, M.R. Galpin, F.W. Jayatilaka, C.G. Smith, D.E. Logan, M.R. Buitelaar, Phys. Rev. Lett. 109, 156804 (2012)

    Article  ADS  Google Scholar 

  61. S. Amasha, A.J. Keller, I.G. Rau, A. Carmi, J.A. Katine, H. Shtrikman, Y. Oreg, D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)

    Article  ADS  Google Scholar 

  62. A.J. Keller, S. Amasha, I. Weymann, C.P. Moca, I.G. Rau, J.A. Katine, H. Shtrikman, G. Zarnd, D. Goldhaber-Gordon, Nat. Phys. 10, 145 (2013)

    Article  Google Scholar 

  63. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002)

    Article  ADS  Google Scholar 

  64. D.A. Bagrets, Yu.V. Nazarov, Phys. Rev. B 67, 085316 (2003)

    Article  ADS  Google Scholar 

  65. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1974)

    Article  ADS  Google Scholar 

  66. H. Bruus, K. Flensberg, in Many-body Quantum Theory in Condensed Matter Physics (Oxford University Press, New York, 2004), Chap. 10

  67. G.D. Mahan, in Many-Particle Physics (Plenum Press, New York, London, 1981), Chap. 3.8

  68. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.-P. Fleurial, T. Caillat, Int. Mater. Rev. 48, 45 (2003)

    Article  Google Scholar 

  69. M. Cutler, N.F. Mott, Phys. Rev. 181, 1336 (1969)

    Article  ADS  Google Scholar 

  70. B. Muralidharan, M. Grifoni, Phys. Rev. B 85, 155423 (2012)

    Article  ADS  Google Scholar 

  71. M. Esposito, K. Lindenberg, C. Van den Broeck, Eur. Phys. Lett. 85, 60010 (2009)

    Article  ADS  Google Scholar 

  72. M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)

    Article  ADS  Google Scholar 

  73. K. Yazawa, A. Shakouri, J. Appl. Phys. 111, 024509 (2012)

    Article  ADS  Google Scholar 

  74. G. Benenti, G. Casati, J. Wang, Phys. Rev. Lett. 110, 070604 (2013)

    Article  ADS  Google Scholar 

  75. N. Nakpathomkun, H.Q. Xu, H. Linke, Phys. Rev. B 82, 235428 (2010)

    Article  ADS  Google Scholar 

  76. U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  77. M. Krawiec, K.I. Wysokiński, Phys. Rev. B 73, 075307 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Physics, M. Curie-Skłodowska University, Radziszewskiego 10, 20-031, Lublin, Poland

    Barbara Szukiewicz & Karol I. Wysokiński

Authors
  1. Barbara Szukiewicz
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Karol I. Wysokiński
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Karol I. Wysokiński.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szukiewicz, B., Wysokiński, K.I. Quantum dot as spin current generator and energy harvester. Eur. Phys. J. B 88, 112 (2015). https://doi.org/10.1140/epjb/e2015-60156-8

Download citation

  • Received: 27 February 2015

  • Revised: 24 March 2015

  • Published: 04 May 2015

  • DOI: https://doi.org/10.1140/epjb/e2015-60156-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Mesoscopic and Nanoscale Systems

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature