Catalytic activities of platinum nanotubes: a density functional study

Regular Article

Abstract

In this work we investigate the catalytic properties of platinum nanotubes using density functional theory based calculations. In particular, we study the dissociation of hydrogen and oxygen molecules as well as oxidation of CO molecules. The results indicate that platinum nanotubes have good catalytic properties and can be effectively used in converting CO molecule to CO2.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    S.H. Chen, K. Kimura, J. Phys. Chem. B 105, 5397 (2001)CrossRefGoogle Scholar
  2. 2.
    W.X. Tu, H.F. Liu, K.Y. Liew, J. Colloid Interface Sci. 229, 453 (2000)CrossRefGoogle Scholar
  3. 3.
    J.B. Liu, M.W. Zhu, P. Zhan, H. Dong, Y. Dong, X.T. Qu, Y.H. Nie, Z.L. Wang, Nanotechnology 17, 4191 (2006)CrossRefADSGoogle Scholar
  4. 4.
    K.R. Christmann, W. Palczewska, in Marcel Dekker (Inc. New York, 1988), pp. 3–56Google Scholar
  5. 5.
    L.K. Verheij, M.B. Hugenschmidt, A.B. Anton, B. Poelsema, G. Comsa, Surf. Sci. 210, 1 (1989)CrossRefADSGoogle Scholar
  6. 6.
    L.K. Verheij, M.B. Hugenschmidt, Surf. Sci. 324, 185 (1995)CrossRefADSGoogle Scholar
  7. 7.
    G. Papoian, J.K. Norskov, R.J. Hoffmann, J. Am. Chem. Soc. 122, 4129 (2000)CrossRefGoogle Scholar
  8. 8.
    C. Zhou, J. Wu, A. Nie, R.C. Forrey, A. Tachibana, H. Cheng, J. Phys. Chem. C 111, 12773 (2007)CrossRefGoogle Scholar
  9. 9.
    X. Liu, H. Dilger, R.A. Eichel, J. Kunstmann, E. Roduner, J. Phys. Chem. B 110, 2013 (2006)CrossRefGoogle Scholar
  10. 10.
    M.N. Huda, L. Kleinman, Phys. Rev. B 74, 195407 (2006)CrossRefADSGoogle Scholar
  11. 11.
    T.S. Zyubina, A.S. Zyubin, Yu.A. Dobrovol’skii, V.M. Volokhov, A.V. Arsatov, Z.G. Bazhanova, Russian Journal of Inorganic Chemistry 56, 1579 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Dag, Y. Ozturk, S. Ciraci, T. Yildirim, Phys. Rev. B 72, 155404 (2005)CrossRefADSGoogle Scholar
  13. 13.
    L. Miao, H.J. Liu, Y.W. Wen, X. Zhou, C.Z. Hu, J. Appl. Phys. 103, 016106 (2008)CrossRefADSGoogle Scholar
  14. 14.
    B. Zhou, W. Guo, C. Tang, Nanotechnology 19, 075707 (2008)CrossRefADSGoogle Scholar
  15. 15.
    Seung Mi Lee, Young Hee Lee, Appl. Phys. Lett. 76, 2877 (2000)CrossRefADSGoogle Scholar
  16. 16.
    I. Cabria, M.J. López, J.A. Alonso, Nanotechnology 17, 778 (2006)CrossRefADSGoogle Scholar
  17. 17.
    S.A. Shevlin, Z.X. Guo, Phys. Rev. B 76, 024104 (2007)CrossRefADSGoogle Scholar
  18. 18.
    G. Mpourmpakis, G.E. Froudakis, G.P. Lithoxoos, J. Samios, Nano Lett. 6, 1581 (2006)CrossRefADSGoogle Scholar
  19. 19.
    G. Girishkumar, K. Vinodgopal, P. Kamat, J. Phys. Chem. B 108, 19960 (2004)CrossRefGoogle Scholar
  20. 20.
    A. Kongkanand, S. Kuwabata, G. Girishkumar, P. Kamat, Langmuir 22, 2392 (2006)CrossRefGoogle Scholar
  21. 21.
    A. Michaelides, P. Hu, J. Am. Chem. Soc. 123, 4235 (2001)CrossRefGoogle Scholar
  22. 22.
    M.P. Hyman, J.W. Medlin, J. Phys. Chem. B 110, 15338 (2006)CrossRefGoogle Scholar
  23. 23.
    D.Y. Chung, Y.H. Chung, N. Jung, K.H. Choi, Y.-E. Sung, Phys. Chem. Chem. Phys. 15, 13658 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Qi, J.G. Yu, J. Li, J. Chem. Phys. 125, 054701 (2006)CrossRefADSGoogle Scholar
  25. 25.
    T. Zhang, A.B. Anderson, Electrochimica Acta 53, 982 (2007)CrossRefGoogle Scholar
  26. 26.
    T. Jacob, W.A. Goddard III, Chem Phys Chem 7, 992 (2006)Google Scholar
  27. 27.
    A.U. Nilekar, M. Mavrikakis, Surf. Sci. 602, L89 (2008)CrossRefADSGoogle Scholar
  28. 28.
    M.J. Janik, C.D. Taylor, M. Neurock, J. Electrochem. Soc. 156, B126 (2009)CrossRefGoogle Scholar
  29. 29.
    J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 108, 17886 (2004)CrossRefGoogle Scholar
  30. 30.
    Y. Sha, T.H. Yu, Y. Liu, B.V. Merinov, W.A. Goddard III, J. Phys. Chem. Lett. 1, 856 (2010)CrossRefGoogle Scholar
  31. 31.
    D.C. Higgins, D. Meza, Z. Chen, J. Phys. Chem. C 114, 21982 (2010)CrossRefGoogle Scholar
  32. 32.
    Z.W. Chen, M. Waje, W.Z. Li, Y.S. Yan, Angew. Chem. Int. Ed. 46, 4060 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Brimaud, S. Pronier, C. Coutanceau, J.-M. Léger, Electrochem. Commun. 10, 1703 (2008)CrossRefGoogle Scholar
  34. 34.
    G.R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, Catalysis Lett. 44, 83 (1997)CrossRefGoogle Scholar
  35. 35.
    K. Liu, A. Wang, T. Zhang, ACS Catal. 2, 1165 (2012)CrossRefGoogle Scholar
  36. 36.
    C. Coutanceau, C. Lamy, P. Urchaga, S. Baranton, Electrocatalysis 3, 304 (2012)CrossRefGoogle Scholar
  37. 37.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)CrossRefADSGoogle Scholar
  38. 38.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)CrossRefADSGoogle Scholar
  39. 39.
    G. Kresse, J. Furtmuller, Phys. Rev. B 54, 11169 (1996)CrossRefADSGoogle Scholar
  40. 40.
    G. Kresse, J. Furtmuller, Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  41. 41.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)CrossRefADSGoogle Scholar
  42. 42.
    Y. Oshima, H. Koizumi, K. Mouri, H. Hirayama, K. Takayanagi, Y. Kondo, Phys. Rev. B 65, 121401(R) (2002)CrossRefADSGoogle Scholar
  43. 43.
    S. Konar, B.C. Gupta, Phys. Rev. B 78, 235414 (2008)CrossRefADSGoogle Scholar
  44. 44.
    I. Matanović, P.R.C. Kent, F.H. Garzon, N.J. Henson, J. Phys. Chem. C 116, 16499 (2012)CrossRefGoogle Scholar
  45. 45.
    M. Watanabe, D.A. Tryk, M. Wakisaka, H. Yano, H. Uchida, Electrochim. Acta 84, 187 (2012), and references thereinCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Prajna Mukherjee
    • 1
    • 2
  • Bikash C. Gupta
    • 1
  • Puru Jena
    • 3
  1. 1.Department of PhysicsVisva-BharatiSantiniketanIndia
  2. 2.Department of PhysicsBolpur CollegeBolpurIndia
  3. 3.Department of PhysicsVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations