Advertisement

Ab initio study of structural and mechanical property of solid molecular hydrogens

  • Yingting Ye
  • Li YangEmail author
  • Tianle Yang
  • Jinlan Nie
  • Shuming Peng
  • Xinggui Long
  • Xiaotao Zu
  • Jincheng Du
Regular Article

Abstract

Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

Keywords

Solid State and Materials 

References

  1. 1.
    B.A. Hammel, Plasma Phys. Contr. Fusion 48, B497 (2006) CrossRefGoogle Scholar
  2. 2.
    S.O. Kucheyev, A.V. Hamza, J. Appl. Phys. 108, 091101 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    O.A. Hurricane et al., Nature 506, 343 (2014) ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Soures, R.L. McCrory, T.R. Boehly, R.S. Craxton, S.D. Jacobs, J.H. Kelly, T.J. Kessler, J.P. Knauer, S.A. Kumpan, R.W. Short, S.A. Skupsky, C.P. Verdon, Laser Part. Beams 11, 317 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    J.R. Miller, Advances in Cryogenic Engineering (Springer Press, US, 1978)Google Scholar
  6. 6.
    C.M. Chen, T.N. Norimatsu, Y. Tsuda, J. Vac. Sci. Technol. A 11, 509 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    A. Sacks, D.H. Darling, Nucl. Fusion 27, 447 (1987)CrossRefGoogle Scholar
  8. 8.
    L. Mok, K. Kim, T.P. Bernat, D.H. Darling, J. Vac. Sci. Technol. A 1, 897 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    B.J. Kozioziemski, A.A. Chernov, E.R. Mapoles, J.D. Sater, Phys. Rev. B 82, 012104 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    B.J. Kozioziemski, S.O. Kucheyev, J.B. Lugten, J.A. Koch, J.D. Moody, A.A. Chernov, E.A. Mapoles, L.J. Atherton, J. Appl. Phys. 105, 093512 (2009) ADSCrossRefGoogle Scholar
  11. 11.
    C.S. Barrett, L. Meyer, J. Wasserman, J. Chem. Phys. 45, 834 (1966)ADSCrossRefGoogle Scholar
  12. 12.
    A.F. Schuch, R.L. Mills, Phys. Rev. Lett. 16, 616 (1966)ADSCrossRefGoogle Scholar
  13. 13.
    K.F. Mucker, S. Talhouk, P.M. Harris, W. David, R.A. Erickson, Phys. Rev. Lett. 16, 799 (1966)ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Gaines, P.A. Fedders, G.W. Collins, J.D. Sater, P.C. Souers, Phys. Rev. B 52, 7243 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    B.A. Wallace Jr., H. Meyer, J. Low Temp. Phys. 15, 297 (1974)ADSCrossRefGoogle Scholar
  16. 16.
    R. Wanner, H. Meyer, Phys. Lett. A 41, 189 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    R. Wanner, H. Meyer, R.L. Mills, J. Low Temp. Phys. 13, 337 (1973)ADSCrossRefGoogle Scholar
  18. 18.
    B.J. Kozioziemski, S.O. Kucheyev, J.B. Lugten, J.A. Koch, J.D. Moody, A.A. Chernov, E.A. Mapoles, A.V. Hamza, L.J. Atherton, J. Appl. Phys. 105, 093512 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    V.V. Goldman, J. Low Temp. Phys. 24, 297 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    V.V. Goldman, J. Low Temp. Phys. 26, 203 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    R. Wanner, H. Meyer, Low Temperature Physics-LT 13 (Springer press, US, 1974)Google Scholar
  22. 22.
    P.J. Thomas, S.C. Rand, B.P. Stoicheff, Can. J. Phys. 56, 1494 (1978) ADSCrossRefGoogle Scholar
  23. 23.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) ADSCrossRefGoogle Scholar
  25. 25.
    C. Wei, F.T. Kong, H.R. Gong, Int. J. Hydrogen Energ. 38, 16485 (2013) CrossRefGoogle Scholar
  26. 26.
    G.H. Lu, H.B. Zhou, C.S. Becquart, Nucl. Fusion 54, 086001 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    K. Nobuhara, H. Kasai, W.A. Dino, H. Nakanishi, Surf. Sci. 566, 703 (2004) ADSCrossRefGoogle Scholar
  28. 28.
    A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    A.M. Reilly, A. Tkatchenko, J. Chem. Phys. 139, 024705 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    R.L. Mills, A.F. Schuch, Phys. Rev. Lett. 15, 722 (1965)ADSCrossRefGoogle Scholar
  31. 31.
    A.F. Schuch, R.L. Mills, Phys. Rev. Lett. 16, 616 (1965)ADSCrossRefGoogle Scholar
  32. 32.
    I.F. Silvera, Rev. Mod. Phys. 52, 393 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    H.E. Lorenzana, I.F. Silvera, K.A. Goettel, Phys. Rev. Lett. 63, 19 (1989)CrossRefGoogle Scholar
  34. 34.
    A.E. Curzon, A.J. Mascall, Br. J. Appl. Phys. 16, 1301 (1965) ADSCrossRefGoogle Scholar
  35. 35.
    P. Kamakoti, D.S. Sholl, J. Membrane Sci. 225, 145 (2003) CrossRefGoogle Scholar
  36. 36.
    J. Felsteiner, Phys. Rev. Lett. 15, 1025 (1965) ADSCrossRefGoogle Scholar
  37. 37.
    W.N. Hardy, I.F. Silvera, J.P. McTague, Phys. Rev. Lett. 26, 127 (1971)ADSCrossRefGoogle Scholar
  38. 38.
    J.L. Yarnell, R.L. Mills, A.F. Schuch, Sov. J. Low Temp. Phys. 1, 366 (1974)Google Scholar
  39. 39.
    W.N. Hardy, I.F. Silvera, K.N. Klump, O. Schnepp, Phys. Rev. Lett. 21, 291 (1968)ADSCrossRefGoogle Scholar
  40. 40.
    M. Clouter, H.P. Gush, Phys. Rev. Lett. 15, 200 (1965)ADSCrossRefGoogle Scholar
  41. 41.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006) CrossRefGoogle Scholar
  42. 42.
    S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132, 154104 (2010) ADSCrossRefGoogle Scholar
  43. 43.
    S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 32, 1456 (2011) CrossRefGoogle Scholar
  44. 44.
    M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004) ADSCrossRefGoogle Scholar
  45. 45.
    K. Kee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82, 081101 (2010) ADSCrossRefGoogle Scholar
  46. 46.
    G.A. Gallup, J. Chem. Phys. 66, 2252 (1977) ADSCrossRefGoogle Scholar
  47. 47.
    I.F. Silvera, V.V. Goldman, J. Chem. Phys. 69, 4209 (1978) ADSCrossRefGoogle Scholar
  48. 48.
    M.G. Dondi, U. Valbusa, G. Scoles, Chem. Phys. Lett. 17, 137 (1972)ADSCrossRefGoogle Scholar
  49. 49.
    Y.Y. Dai, L. Yang, J.L. Nie, K.M. Fan, S.M. Peng, X.G. Long, X.S. Zhou, W.Z. Bing, X.T. Zu, F. Gao, J. Alloys Comp. 581, 404 (2013) CrossRefGoogle Scholar
  50. 50.
    K.M. Fan, L. Yang, Z.Y. Zhang, S.M. Peng, X.G. Long, X.S. Zhou, X.T. Zu, F. Gao, Eur. Phys. J. B 87, 295 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    K.M. Fan, L. Yang, Q.Q. Sun, Y.Y. Dai, P.S. Ming, X.G. Long, X.S. Zhou, X.T. Zu, Acta Physica Sinica 62, 116201 (2013) Google Scholar
  52. 52.
    Z.J. Wu. E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, J. Meng, Phys. Rev. B 76, 054115 (2007) ADSCrossRefGoogle Scholar
  53. 53.
    V.V. Goldman, J. Low Temp. Phys. 36, 521 (1979)ADSCrossRefGoogle Scholar
  54. 54.
    R. Wanner, H. Meyer, J. Low Temp. Phys. 11, 715 (1973)ADSCrossRefGoogle Scholar
  55. 55.
    M. Nielsen, Phys. Rev. B 7, 1626 (1973)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yingting Ye
    • 1
  • Li Yang
    • 1
    Email author
  • Tianle Yang
    • 1
  • Jinlan Nie
    • 1
  • Shuming Peng
    • 2
  • Xinggui Long
    • 2
  • Xiaotao Zu
    • 1
  • Jincheng Du
    • 3
  1. 1.School of Physical ElectronicsUniversity of Electronic Science and Technology of ChinaChengduP.R. China
  2. 2.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangP.R. China
  3. 3.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA

Personalised recommendations