Skip to main content

Correlation between centrality metrics and their application to the opinion model

Abstract

In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The mth-order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the betweenness, the closeness, and the components of the principal eigenvector of the adjacency matrix are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between the principal eigenvector and the 2nd-order degree mass is larger than that between the principal eigenvector and a lower order degree mass. Finally, we investigate the effect of the inflexible contrarians selected based on different centrality metrics in helping one opinion to compete with another in the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the inflexible contrarians based on the leverage, the betweenness, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the betweenness, as well as a high centrality similarity between the leverage and the degree.

References

  1. S.H. Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008)

  4. C.H. Comin, L. da Fontoura Costa, Phys. Rev. E 84, 056105 (2011)

    Article  ADS  Google Scholar 

  5. M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H.E. Stanley, H.A. Makse, Nat. Phys. 6, 888 (2010)

    Article  Google Scholar 

  6. J. Borge-Holthoefer, Y. Moreno, Phys. Rev. E 85, 026116 (2012)

    Article  ADS  Google Scholar 

  7. R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 036104 (2002)

    Article  ADS  Google Scholar 

  8. S.P. Borgatti, Social Netw. 27, 55 (2005)

    Article  Google Scholar 

  9. L.C. Freeman, Social Netw. 1, 215 (1979)

    Article  Google Scholar 

  10. N.E. Friedkin, Am. J. Soc. 96, 1478 (1991)

    Article  Google Scholar 

  11. B. Mullen, C. Johnson, E. Salas, Soc. Netw. 13, 169 (1991)

    Article  Google Scholar 

  12. M.E.J. Newman, in The New Palgrave Encyclopedia of Economics, edited by L.E. Blume, S.N. Durlauf (Palgrave Macmillan, Basingstoke, 2008)

  13. P. Van Mieghem, arXiv:1401.4580 (2014)

  14. K.E. Joyce, P.J. Laurienti, J.H. Burdette, S. Hayasaka, PLoS One 5, e12200 (2010)

    Article  ADS  Google Scholar 

  15. P.-J. Kim, H. Jeong, Eur. Phys. J. B 55, 109 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. D. Koschützki, F. Schreiber, Comparison of centralities for biological networks, in German Conference on Bioinformatics, 2004, pp. 199–206

  17. E. Estrada, Ecological Complexity 4, 48 (2007)

    Article  Google Scholar 

  18. C. Li, H. Wang, P. Van Mieghem, Degree and principal eigenvectors in complex networks, in Proceedings of NETWORKING 2012 (Springer, 2012), pp. 149–160

  19. M. Faloutsos, P. Faloutsos, C. Faloutsos, ACM SIGCOMM Computer Communication Review 29, 251 (1999)

    Article  Google Scholar 

  20. L. da F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)

    Article  ADS  Google Scholar 

  21. A. Jamakovic, S. Uhlig, Networks and Heterogeneous Media 3, 345 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. C. Li, H. Wang, W. de Haan, C.J. Stam, P. Van Mieghem, J. Stat. Mech. 2011, P11018 (2011)

    Article  Google Scholar 

  23. S. Trajanovski, J. Martín-Hernández, W. Winterbach, P. Van Mieghem, J. Complex Netw. 1, 44 (2013)

    Article  Google Scholar 

  24. P. Erdős, A. Rényi, Publ. Math. Debrecen 6, 290 (1959)

    MathSciNet  Google Scholar 

  25. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  26. R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function (Cambridge University Press, Cambridge, 2010)

  27. S. Galam, Europhys. Lett. 70, 705 (2005)

    Article  ADS  Google Scholar 

  28. C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)

    Article  ADS  Google Scholar 

  29. J. Shao, S. Havlin,, H.E. Stanley, Phys. Rev. Lett. 103, 018701 (2009)

    Article  ADS  Google Scholar 

  30. Q. Li, L.A. Braunstein, H. Wang, J. Shao, H.E. Stanley, S. Havlin, J. Stat. Phys. 151, 92 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. B. Qu, Q. Li, S. Havlin, H.E. Stanley, H. Wang, arXiv:1404.7318 (2014)

  32. Q. Li, L.A. Braunstein, S. Havlin, H.E. Stanley, Phys. Rev. E 84, 066101 (2011)

    Article  ADS  Google Scholar 

  33. P. Van Mieghem, Performance Analysis of Complex Networks and Systems (Cambridge University Press, 2014)

  34. P. Van Mieghem, Graph spectra for complex networks (Cambridge University Press, Cambridge, 2011)

  35. J.M. Anthonisse, The rush in a directed graph, Stichting Mathematisch Centrum. Mathematische Besliskunde, No. BN 9/71, 1971, pp. 1–10

  36. H. Wang, J.M. Hernandez, P. Van Mieghem, Phys. Rev. E 77, 046105 (2008)

    Article  ADS  Google Scholar 

  37. D. Koschützki, K.A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, O. Zlotowski, in Network Analysis: Methodological Foundations (Springer, 2005), pp. 16–61

  38. H.-W. Ma, A.-P. Zeng, Bioinformatics 19, 1423 (2003)

    Article  Google Scholar 

  39. S.B. Seidman, Social Netw. 5, 269 (1983)

    Article  MathSciNet  Google Scholar 

  40. B. Pittel, J. Spencer, N. Wormald, J. Combinatorial Theory Ser. B 67, 111 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. V. Batagelj, M. Zaversnik, Adv. Data Anal. Classi. 5, 129 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)

    Article  ADS  Google Scholar 

  43. M.P. Joy, A. Brock, D.E. Ingber, S. Huang, BioMed Res. Int. 2005, 96 (2005)

    Google Scholar 

  44. P. Van Mieghem, Performance Analysis of Communications Networks and Systems (Cambridge University Press, Cambridge, 2006)

  45. M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)

    Article  ADS  Google Scholar 

  46. M. Krivelevich, B. Sudakov, Comb. Probab. Comput. 12, 61 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  47. I.J. Farkas, I. Derényi, A.-L. Barabási, T. Vicsek, Phys. Rev. E 64, 026704 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Li.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Li, Q., Van Mieghem, P. et al. Correlation between centrality metrics and their application to the opinion model. Eur. Phys. J. B 88, 65 (2015). https://doi.org/10.1140/epjb/e2015-50671-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-50671-y

Keywords

  • Statistical and Nonlinear Physics