Abstract
In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The mth-order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the betweenness, the closeness, and the components of the principal eigenvector of the adjacency matrix are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between the principal eigenvector and the 2nd-order degree mass is larger than that between the principal eigenvector and a lower order degree mass. Finally, we investigate the effect of the inflexible contrarians selected based on different centrality metrics in helping one opinion to compete with another in the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the inflexible contrarians based on the leverage, the betweenness, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the betweenness, as well as a high centrality similarity between the leverage and the degree.
Article PDF
References
S.H. Strogatz, Nature 410, 268 (2001)
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Phys. Rep. 424, 175 (2006)
A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008)
C.H. Comin, L. da Fontoura Costa, Phys. Rev. E 84, 056105 (2011)
M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H.E. Stanley, H.A. Makse, Nat. Phys. 6, 888 (2010)
J. Borge-Holthoefer, Y. Moreno, Phys. Rev. E 85, 026116 (2012)
R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 036104 (2002)
S.P. Borgatti, Social Netw. 27, 55 (2005)
L.C. Freeman, Social Netw. 1, 215 (1979)
N.E. Friedkin, Am. J. Soc. 96, 1478 (1991)
B. Mullen, C. Johnson, E. Salas, Soc. Netw. 13, 169 (1991)
M.E.J. Newman, in The New Palgrave Encyclopedia of Economics, edited by L.E. Blume, S.N. Durlauf (Palgrave Macmillan, Basingstoke, 2008)
P. Van Mieghem, arXiv:1401.4580 (2014)
K.E. Joyce, P.J. Laurienti, J.H. Burdette, S. Hayasaka, PLoS One 5, e12200 (2010)
P.-J. Kim, H. Jeong, Eur. Phys. J. B 55, 109 (2007)
D. Koschützki, F. Schreiber, Comparison of centralities for biological networks, in German Conference on Bioinformatics, 2004, pp. 199–206
E. Estrada, Ecological Complexity 4, 48 (2007)
C. Li, H. Wang, P. Van Mieghem, Degree and principal eigenvectors in complex networks, in Proceedings of NETWORKING 2012 (Springer, 2012), pp. 149–160
M. Faloutsos, P. Faloutsos, C. Faloutsos, ACM SIGCOMM Computer Communication Review 29, 251 (1999)
L. da F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)
A. Jamakovic, S. Uhlig, Networks and Heterogeneous Media 3, 345 (2008)
C. Li, H. Wang, W. de Haan, C.J. Stam, P. Van Mieghem, J. Stat. Mech. 2011, P11018 (2011)
S. Trajanovski, J. Martín-Hernández, W. Winterbach, P. Van Mieghem, J. Complex Netw. 1, 44 (2013)
P. Erdős, A. Rényi, Publ. Math. Debrecen 6, 290 (1959)
A.-L. Barabási, R. Albert, Science 286, 509 (1999)
R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function (Cambridge University Press, Cambridge, 2010)
S. Galam, Europhys. Lett. 70, 705 (2005)
C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)
J. Shao, S. Havlin,, H.E. Stanley, Phys. Rev. Lett. 103, 018701 (2009)
Q. Li, L.A. Braunstein, H. Wang, J. Shao, H.E. Stanley, S. Havlin, J. Stat. Phys. 151, 92 (2013)
B. Qu, Q. Li, S. Havlin, H.E. Stanley, H. Wang, arXiv:1404.7318 (2014)
Q. Li, L.A. Braunstein, S. Havlin, H.E. Stanley, Phys. Rev. E 84, 066101 (2011)
P. Van Mieghem, Performance Analysis of Complex Networks and Systems (Cambridge University Press, 2014)
P. Van Mieghem, Graph spectra for complex networks (Cambridge University Press, Cambridge, 2011)
J.M. Anthonisse, The rush in a directed graph, Stichting Mathematisch Centrum. Mathematische Besliskunde, No. BN 9/71, 1971, pp. 1–10
H. Wang, J.M. Hernandez, P. Van Mieghem, Phys. Rev. E 77, 046105 (2008)
D. Koschützki, K.A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, O. Zlotowski, in Network Analysis: Methodological Foundations (Springer, 2005), pp. 16–61
H.-W. Ma, A.-P. Zeng, Bioinformatics 19, 1423 (2003)
S.B. Seidman, Social Netw. 5, 269 (1983)
B. Pittel, J. Spencer, N. Wormald, J. Combinatorial Theory Ser. B 67, 111 (1996)
V. Batagelj, M. Zaversnik, Adv. Data Anal. Classi. 5, 129 (2011)
R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)
M.P. Joy, A. Brock, D.E. Ingber, S. Huang, BioMed Res. Int. 2005, 96 (2005)
P. Van Mieghem, Performance Analysis of Communications Networks and Systems (Cambridge University Press, Cambridge, 2006)
M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. E 64, 026118 (2001)
M. Krivelevich, B. Sudakov, Comb. Probab. Comput. 12, 61 (2003)
I.J. Farkas, I. Derényi, A.-L. Barabási, T. Vicsek, Phys. Rev. E 64, 026704 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is published with open access at Springerlink.com
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Li, C., Li, Q., Van Mieghem, P. et al. Correlation between centrality metrics and their application to the opinion model. Eur. Phys. J. B 88, 65 (2015). https://doi.org/10.1140/epjb/e2015-50671-y
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2015-50671-y