Skip to main content
Log in

Systems confined by pusher multiplicative noises

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We frequently employ the intuitive concept that a multiplicative noise can expel a system towards the field values for which intensity is negligible. This process applies even when such noise effects are opposed to the deterministic forces. In addition, it has been stated that a system may be confined by such noise within a field values region, distant from the stationary homogeneous solutions. In order to promote or explain noise-induced ordering phase transitions, the gradient of the multiplicative factor of noise is employed as if it were a force. However, there has not been a thorough study of this concept in the literature to date. In this paper, we conduct such a study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  2. J. García-Ojalvo, J.M. Sancho, Noise in Spatially Extended System (Springer-Verlag, New York, 1999)

  3. P. Reimann, Phys. Rep. 361, 57 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. F. Sagués, J.M. Sancho, J. García-Ojalvo, Rev. Mod. Phys. 79, 829 (2007)

  5. R. Toral, C.J. Tessone, J. Viana Lopez, Eur. Phys. J. Special Topics 143, 59 (2007)

  6. C. Van den Broeck, J.M.R. Parrondo, R. Toral, Phys. Rev. Lett. 73, 3395 (1994)

  7. C. Van den Broeck, J.M.R. Parrondo, R. Toral, R. Kawai, Phys. Rev. E 55, 4084 (1997)

    Article  ADS  Google Scholar 

  8. S. Mangioni, R. Deza, H.S. Wio, R. Toral, Phys. Rev. Lett. 79, 2389 (1997)

    Article  ADS  Google Scholar 

  9. S. Mangioni, R. Deza, R. Toral, H.S. Wio, Phys. Rev. E 61, 223 (2000)

    Article  ADS  Google Scholar 

  10. S.E. Mangioni, R. Deza, H.S. Wio, Phys. Rev. E 63, 041115 (2001)

  11. W. Horsthemke, R. Lefever, Noise Induced Transitions (Springer, Berlin, 1984)

  12. M. Ibañes, J. García-Ojalvo, R. Toral, J.M. Sancho, Phys. Rev. Lett. 87, 020601 (2001)

    Article  ADS  Google Scholar 

  13. O. Carrillo, M. Ibañes, J. García-Ojalvo, J. Casademunt, J.M. Sancho, Phys. Rev. E 67, 046110 (2003)

    Article  ADS  Google Scholar 

  14. J. Buceta, K. Lindenberg, Phys. Rev. E 69, 011102 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. H.S. Wio, in 22nd International Conference on Noise and Fluctuations, 2013, DOI 10.1109/ICNF.2013.6578909

  16. J. Buceta, M. Ibañes, J.M. Sancho, K. Lindenberg, Phys. Rev. E 67, 021113 (2003)

    Article  ADS  Google Scholar 

  17. K. Wood, J. Buceta, K. Lindenberg, Phys. Rev. E 73, 022101 (2006)

  18. B. von Haeften, G. Izús, S. Mangioni, A.D. Sánchez, H.S. Wio, Phys. Rev. E 69, 021107 (2004)

    Article  ADS  Google Scholar 

  19. S.E. Mangioni, Physica A 389, 1799 (2010)

    Article  ADS  Google Scholar 

  20. S.E. Mangioni, R. Deza, Phys. Rev. E 82, 042101 (2010)

    Article  ADS  Google Scholar 

  21. S.E. Mangioni, R.R. Deza, Physica A 391, 4191 (2012)

    Article  ADS  Google Scholar 

  22. S.E. Mangioni, R.R. Deza, submitted

  23. S.E. Mangioni, H.S. Wio, Phys. Rev. E 71, 056203 (2005)

    Article  ADS  Google Scholar 

  24. P. Kloeden, E. Platen, in Numerical Solution of Stochastic Differential Equations (Springer, berlin, 2011), Vol. 23

  25. M. San Miguel, R. Toral, in Instabilities and Nonequilibrium Structures VI, edited by E. Tirapegui, J. Martinez, R. Tiemann (Kluwer Academic, Dordrecht, 2000), p. 35130

  26. J.A. Kromer, L. Schimansky-Geier, R. Toral, Phys. Rev. E 87, 063311 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio E. Mangioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangioni, S.E. Systems confined by pusher multiplicative noises. Eur. Phys. J. B 88, 53 (2015). https://doi.org/10.1140/epjb/e2015-50659-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-50659-7

Keywords

Navigation