Abstract
We frequently employ the intuitive concept that a multiplicative noise can expel a system towards the field values for which intensity is negligible. This process applies even when such noise effects are opposed to the deterministic forces. In addition, it has been stated that a system may be confined by such noise within a field values region, distant from the stationary homogeneous solutions. In order to promote or explain noise-induced ordering phase transitions, the gradient of the multiplicative factor of noise is employed as if it were a force. However, there has not been a thorough study of this concept in the literature to date. In this paper, we conduct such a study.
Similar content being viewed by others
References
L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998)
J. García-Ojalvo, J.M. Sancho, Noise in Spatially Extended System (Springer-Verlag, New York, 1999)
P. Reimann, Phys. Rep. 361, 57 (2013)
F. Sagués, J.M. Sancho, J. García-Ojalvo, Rev. Mod. Phys. 79, 829 (2007)
R. Toral, C.J. Tessone, J. Viana Lopez, Eur. Phys. J. Special Topics 143, 59 (2007)
C. Van den Broeck, J.M.R. Parrondo, R. Toral, Phys. Rev. Lett. 73, 3395 (1994)
C. Van den Broeck, J.M.R. Parrondo, R. Toral, R. Kawai, Phys. Rev. E 55, 4084 (1997)
S. Mangioni, R. Deza, H.S. Wio, R. Toral, Phys. Rev. Lett. 79, 2389 (1997)
S. Mangioni, R. Deza, R. Toral, H.S. Wio, Phys. Rev. E 61, 223 (2000)
S.E. Mangioni, R. Deza, H.S. Wio, Phys. Rev. E 63, 041115 (2001)
W. Horsthemke, R. Lefever, Noise Induced Transitions (Springer, Berlin, 1984)
M. Ibañes, J. García-Ojalvo, R. Toral, J.M. Sancho, Phys. Rev. Lett. 87, 020601 (2001)
O. Carrillo, M. Ibañes, J. García-Ojalvo, J. Casademunt, J.M. Sancho, Phys. Rev. E 67, 046110 (2003)
J. Buceta, K. Lindenberg, Phys. Rev. E 69, 011102 (2004)
H.S. Wio, in 22nd International Conference on Noise and Fluctuations, 2013, DOI 10.1109/ICNF.2013.6578909
J. Buceta, M. Ibañes, J.M. Sancho, K. Lindenberg, Phys. Rev. E 67, 021113 (2003)
K. Wood, J. Buceta, K. Lindenberg, Phys. Rev. E 73, 022101 (2006)
B. von Haeften, G. Izús, S. Mangioni, A.D. Sánchez, H.S. Wio, Phys. Rev. E 69, 021107 (2004)
S.E. Mangioni, Physica A 389, 1799 (2010)
S.E. Mangioni, R. Deza, Phys. Rev. E 82, 042101 (2010)
S.E. Mangioni, R.R. Deza, Physica A 391, 4191 (2012)
S.E. Mangioni, R.R. Deza, submitted
S.E. Mangioni, H.S. Wio, Phys. Rev. E 71, 056203 (2005)
P. Kloeden, E. Platen, in Numerical Solution of Stochastic Differential Equations (Springer, berlin, 2011), Vol. 23
M. San Miguel, R. Toral, in Instabilities and Nonequilibrium Structures VI, edited by E. Tirapegui, J. Martinez, R. Tiemann (Kluwer Academic, Dordrecht, 2000), p. 35130
J.A. Kromer, L. Schimansky-Geier, R. Toral, Phys. Rev. E 87, 063311 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mangioni, S.E. Systems confined by pusher multiplicative noises. Eur. Phys. J. B 88, 53 (2015). https://doi.org/10.1140/epjb/e2015-50659-7
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2015-50659-7

