Spatiotemporal regularity in networks with stochastically varying links

Regular Article

Abstract

In this work we investigate time varying networks with complex dynamics at the nodes. We consider two scenarios of network change in an interval of time: first, we have the case where each link can change with probability pt, i.e. the network changes occur locally and independently at each node. Secondly we consider the case where the entire connectivity matrix changes with probability pt, i.e. the change is global. We show that network changes, occuring both locally and globally, yield an enhanced range of synchronization. When the connections are changed slowly (i.e. pt is low) the nodes display nearly synchronized intervals interrupted by intermittent unsynchronized chaotic bursts. However when the connections are switched quickly (i.e. pt is large), the intermittent behavior quickly settles down to a steady synchronized state. Furthermore we find that the mean time taken to reach synchronization from generic random initial states is significantly reduced when the underlying links change more rapidly. We also analyse the probabilistic dynamics of the system with changing connectivity and the stable synchronized range thus obtained is in broad agreement with those observed numerically.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)CrossRefADSGoogle Scholar
  2. 2.
    A.-L. Barabasi, R. Albert, Science 286, 509 (1999)CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    F. Varela, J.P. Lachaux, E. Rodriguez, J. Martinerie, Nat. Rev. Neurosci. 2, 229 (2001)CrossRefGoogle Scholar
  4. 4.
    V. Brezina, I.V. Orekhova, K.R. Weiss, J. Neurophysiol. 83, 207 (2000)Google Scholar
  5. 5.
    C. Von der Malsburg, in Handbook of Brain Theory and Neural Networks (MIT Press, 2002), p. 365Google Scholar
  6. 6.
    D.H. Zanette, S.R. Gusmán, J. Biol. Phys. 34, 135 (2008)CrossRefGoogle Scholar
  7. 7.
    R.E. Amritkar, C.-K. Hu, Chaos 16, 015117 (2006)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    V. Kohar, S. Sinha, Chaos Solitons Fractals 54, 127 (2013)CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    A. Choudhary, V. Kohar, S. Sinha, Sci. Rep. 4, 4308 (2014)CrossRefADSGoogle Scholar
  10. 10.
    M. Porfiri, D.J. Stilwell, E.M. Bollt, J.D. Skufca, Physica D 224, 102 (2006)CrossRefADSMATHMathSciNetGoogle Scholar
  11. 11.
    M. Porfiri, R. Pigliacampo, SIAM J. Appl. Dynam. Syst. 7, 825 (2008)CrossRefADSMATHMathSciNetGoogle Scholar
  12. 12.
    M. Porfiri, Europhys. Lett. 96, 40014 (2011)CrossRefADSGoogle Scholar
  13. 13.
    V. Mwaffo, P. De Lellis, M. Porfiri, Chaos 24, 01310 (2014)CrossRefGoogle Scholar
  14. 14.
    I.V. Belykh, V.N. Belykh, M. Hasler, Physica D 195, 188 (2004)CrossRefADSMATHMathSciNetGoogle Scholar
  15. 15.
    M. Porfiri, Phys. Rev. E 85, 056114 (2012)CrossRefADSGoogle Scholar
  16. 16.
    M. Hasler, V. Belykh, I. Belykh, SIAM J. Appl. Dyn. Syst. 12, 1007 (2013)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    M. Hasler, V. Belykh, I. Belykh, SIAM J. Appl. Dyn. Syst. 12, 1031 (2013)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    I. Belykh, V. Belykh, R. Jeter, M. Hasler, Eur. Phys. J. Special Topics 222, 2497 (2013)CrossRefADSGoogle Scholar
  19. 19.
    J. Crutchfield, K. Kaneko, in Directions In Chaos, edited by B.L. Hao (World Scientific, Singapore, 1987)Google Scholar
  20. 20.
    M. Barahona, L.M. Pecora, Phys. Rev. Lett. 89, 054101 (2002)CrossRefADSGoogle Scholar
  21. 21.
    H. Hong, M.Y. Choi, B.J. Kim, Phys. Rev. E 65, 026139 (2002)CrossRefADSGoogle Scholar
  22. 22.
    S. Poria, M.D. Shrimali, S. Sinha, Phys. Rev. E 78, 035201 (2008)CrossRefADSGoogle Scholar
  23. 23.
    R. Suresh, D.V. Senthilkumar, M. Lakshmanan, J. Kurths, Phys. Rev. E 86, 016212 (2012)CrossRefADSGoogle Scholar
  24. 24.
    A. Zumdieck, M. Timme, T. Geisel, F. Wolf, Phys. Rev. Lett. 93, 244103 (2004)CrossRefADSGoogle Scholar
  25. 25.
    S. Sinha, Phys. Rev. E 66, 016209 (2002)CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    A. Mondal, S. Sinha, J. Kurths, Phys. Rev. E 78, 06620 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Indian Institute of Science Education and Research (IISER) MohaliPunjabIndia

Personalised recommendations