Abstract
By means of atomistic simulations we study how thermal transport is affected by several chemical and morphological parameters in Ge/Si superlattices. We predict thermal conductivity as a function of the alloy barrier stoichiometry and period ratio. Our final target is to provide some technologically useful guidelines for thermoelectric design. In particular, we estimate the optimal Si concentration in the alloy barrier providing a significant thermal conductivity reduction as needed to maximize the thermoelectric figure of merit. We find that thermal conductivity is strongly affected by the barrier stoichiometry x and we suggest 10% ≤ x ≤ 20% as the optimal quantity. Moreover, we observe a thermal conductivity non-monotonic dependence on the period ratio having a minimum for a 2:1 value.
Similar content being viewed by others
References
M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, M. Mohamad, Renew. Sust. Energ. Rev. 30, 337 (2014)
L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)
B. Yang, G. Chen, in Thermal Conductivity: Theory, Properties and Applications, edited by T.M. Tritt (Kluwar Press, 2005)
R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001)
R. Rurali, X. Cartoixà, L. Colombo, Phys Rev. B 90, 041408 (2014)
T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge, Science 297, 2229 (2002)
G. Chen, Phys. Rev. B 57, 14958 (1998)
K.H. Lin, A. Strachan, Phys. Rev. B. 87, 115302 (2013)
Y.K. Koh, Y. Cao, D.G. Cahill, D. Jena, Adv. Funct. Mater. 19, 610 (2009)
G. Chen, C.L. Tien, J. Thermophys. Heat Transf. 7, 311 (1993)
Z. Chen, J. Yang, Y. Chen, Chin. Sci. Bull. 51, 2931 (2006)
Y. Chen, D. Li, J.R. Lukes, Physica B 349, 270 (2004)
Y. Chen, D. Li, J.R. Lukes, Z. Ni, M. Chen, Phys. Rev. B 72, 174302 (2005)
I. Savić, D. Donadio, F. Gygi, G. Galli, Appl. Phys. Lett. 102, 073113 (2013)
S. Chakraborty, C.A. Kleint, A. Heinrich, C.M. Schneider, J. Schumann, M. Falke, S. Teichert, Appl. Phys. Lett. 83, 4184 (2003)
T. Borca-Tasciuc, W. Liu, J.L. Liu, T. Zeng, D.W. Song, C.D. Moore, G. Chen, K.L. Wang, M.S. Goorsky, T. Radetic, R. Gronsky, T. Koga, M.S. Dresselhaus, Superlattices Microstruct. 28, 199 (2000)
L. Ferre Llin, A. Samarelli, S. Cecchi, T. Etzelstorfer, E. Mueller Gubler, D. Chrastina, G. Isella, J. Stangl, J.M.R. Weaver, P.S. Dobson, D.J. Paul, Appl. Phys. Lett. 103, 143507 (2013)
T.H. Geballe, G.W. Hull, Phys. Rev. 94, 1134 (1954)
C. Melis, R. Dettori, S. Vandermeulen, L. Colombo, Eur. Phys. J. B 87, 96 (2014)
E. Lampin, P.L. Palla, P.A. Francioso, F. Cleri, J. Appl. Phys. 114, 033525 (2013)
E. Lampin, Q.H. Nguyen, P.A. Francioso, F. Cleri, Appl. Phys. Lett. 100, 131906 (2012)
S. Plimpton, J. Comput. Phys. 117, 1 (1995)
C. Melis, L. Colombo, Phys. Rev. Lett. 112, 065901 (2014)
K.R. Hahn, C. Melis, L. Colombo, Eur. Phys. J. B 87, 150 (2014)
M. Peressi, L. Colombo, R. Resta, S. Baroni, A. Baldereschi, Phys. Rev. B 48, 12047 (1993)
C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989)
F. Schaffler, in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited by M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur (John Wiley & Sons, Inc., New York, 2001)
K. Moriguchi, A. Shintani, Jpn J. Appl. Phys. 37, 414 (1998)
P.K. Schelling, S.R. Phillpot, P. Keblinski, Phys. Rev. B 65, 144306 (2002)
D.P. Sellan, E.S. Landry, J.E. Turney, A.J.H. McGaughey, C.H. Amon, Phys. Rev. B. 81, 214305 (2010)
X. Xu et al., Nat. Commun. 5, 3689 (2014)
J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Phys. Rev. Lett. 106, 045901 (2011)
G. Busch, O. Vogt, Helv. Phys. Acta 33, 437 (1960)
M.V. Simkin, G.D. Mahan, Phys. Rev. Lett. 84, 927 (2000)
B. Yang, G. Chen, Phys. Rev. B 67, 195311 (2003)
P. Chen, N.A. Katcho, J.P. Feser, W. Li, M. Glaser, O.G. Schmidt, D.G. Cahill, N. Mingo, A. Rastelli, Phys. Rev. Lett. 111, 115901 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dettori, R., Melis, C. & Colombo, L. SixGe1-x alloy as efficient phonon barrier in Ge/Si superlattices for thermoelectric applications. Eur. Phys. J. B 88, 27 (2015). https://doi.org/10.1140/epjb/e2014-50628-8
Received:
Revised:
Published:
DOI: https://doi.org/10.1140/epjb/e2014-50628-8