Low dimensional dynamics in birdsong production

Colloquium

Abstract

The way in which information about behavior is represented at different levels of the motor pathway, remains among the fundamental unresolved problems of motor coding and sensorimotor integration. Insight into this matter is essential for understanding complex learned behaviors such as speech or birdsong. A major challenge in motor coding has been to identify an appropriate framework for characterizing behavior. In this work we discuss a novel approach linking biomechanics and neurophysiology to explore motor control of songbirds. We present a model of song production based on gestures that can be related to physiological parameters that the birds can control. This physical model for the vocal structures allows a reduction in the dimensionality of the behavior, being a powerful approach for studying sensorimotor integration. Our results also show how dynamical systems models can provide insight into neurophysiological analysis of vocal motor control. In particular, our work challenges the actual understanding of how the motor pathway of the songbird systems works and proposes a novel perspective to study neural coding for song production.

Keywords

Colloquium 

References

  1. 1.
    A.J. Doupe, P.K. Kuhl, Ann. Rev. Neurosci. 22, 567 (1999)CrossRefGoogle Scholar
  2. 2.
    H.P. Zeigler, P. Marler, Neuroscience of Birdsong (Cambridge University Press, Cambridge, 2012)Google Scholar
  3. 3.
    R. Mooney, Learn. Memory 16, 655 (2009)CrossRefGoogle Scholar
  4. 4.
    G.B. Mindlin, R. Laje, The Physics of Birdsong (Springer-Verlag, Berlin, 2005)Google Scholar
  5. 5.
    T. Gardner, G. Cecchi, M. Magnasco, R. Laje, G.B. Mindlin, Phys. Rev. Lett. 87, 208101 (2001) ADSCrossRefGoogle Scholar
  6. 6.
    G.B. Mindlin, T.J. Gardner, F. Goller, R. Suthers, Phys. Rev. E 68, 41908 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    M.A. Trevisan, G.B. Mindlin, F. Goller, Phys. Rev. Lett. 96, 58103 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    A. Amador, Y. Sanz Perl, G.B. Mindlin, D. Margoliash, Nature 495, 59 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    L.M. Alonso, J.A. Alliende, F. Goller, G.B. Mindlin, Phys. Rev. E 79, 41929 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    Y.S. Perl, E.M. Arneodo, A. Amador, F. Goller, G.B. Mindlin, Phys. Rev. E 84, 051909 (2011) ADSCrossRefGoogle Scholar
  11. 11.
    A. Amador, F. Goller, G.B. Mindlin, J. Neurophysiol. 99, 2383 (2008) CrossRefGoogle Scholar
  12. 12.
    F. Goller, O.N. Larsen, Proc. Natl. Acad. Sci. USA 94, 14787 (1997) ADSCrossRefGoogle Scholar
  13. 13.
    I.R. Titze, J. Acoust. Soc. Am. 83, 1536 (1988) ADSCrossRefGoogle Scholar
  14. 14.
    A. Amador, G.B. Mindlin, Chaos 18, 043123 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    S.H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering (Perseus Books, Cambridge, 1994)Google Scholar
  16. 16.
    F. Goller, R.A. Suthers, J. Neurophysiol. 76, 287 (1996)Google Scholar
  17. 17.
    A. Amador, D. Margoliash, J. Neurosci. 33, 11136 (2013) CrossRefGoogle Scholar
  18. 18.
    J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, 1997)Google Scholar
  19. 19.
    J.D. Sitt, E.M. Arneodo, F. Goller, G.B. Mindlin, Phys. Rev. E 81, 31927 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    J.D. Sitt, A. Amador, F. Goller, G.B. Mindlin, Phys. Rev. E 78, 011905 (2008) ADSCrossRefGoogle Scholar
  21. 21.
    N.H. Fletcher, T. Riede, R.A. Suthers, J. Acoust. Soc. Am. 119, 1005 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    T.W. Troyer, Nature 495, 56 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    R.H.R. Hahnloser, A.A. Kozhevnikov, M.S. Fee, Nature 419, 65 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    M.A. Long, M.S. Fee, Nature 456, 189 (2008) ADSCrossRefGoogle Scholar
  25. 25.
    M.A. Goldin, L.M. Alonso, J.A. Alliende, F. Goller, G.B. Mindlin, PLoS One 8, e67814 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    R.S. Hartley, R.A. Suthers, J. Neurobiol. 21, 1236 (1990) CrossRefGoogle Scholar
  27. 27.
    F.C. Hoppensteadt, E.M. Izhikevich, Weakly Connected Neural Networks (Springer, 1997)Google Scholar
  28. 28.
    T. Riede, F. Goller, Brain Lang 115, 69 (2010)CrossRefGoogle Scholar
  29. 29.
    D. Margoliash, J. Neurosci. 6, 1643 (1986)Google Scholar
  30. 30.
    D. Margoliash, M. Konishi, Proc. Natl. Acad. Sci. USA 82, 5997 (1985) ADSCrossRefGoogle Scholar
  31. 31.
    M.O. Magnasco, O. Piro, G.A. Cecchi, Phys. Rev. Lett. 102, 258102 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department Physics, FCEyNUniversity of Buenos Aires and IFIBA-CONICETBuenos AiresArgentina

Personalised recommendations