Benford’s law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions

Abstract

The yearly aggregated tax income data of all, more than 8000, Italian municipalities are analyzed for a period of five years, from 2007 to 2011, to search for conformity or not with Benford’s law, a counter-intuitive phenomenon observed in large tabulated data where the occurrence of numbers having smaller initial digits is more favored than those with larger digits. This is done in anticipation that large deviations from Benford’s law will be found in view of tax evasion supposedly being widespread across Italy. Contrary to expectations, we show that the overall tax income data for all these years is in excellent agreement with Benford’s law. Furthermore, we also analyze the data of Calabria, Campania and Sicily, the three Italian regions known for strong presence of mafia, to see if there are any marked deviations from Benford’s law. Again, we find that all yearly data sets for Calabria and Sicily agree with Benford’s law whereas only the 2007 and 2008 yearly data show departures from the law for Campania. These results are again surprising in view of underground and illegal nature of economic activities of mafia which significantly contribute to tax evasion. Some hypothesis for the found conformity is presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. Francis, V.R. Prevosto, Data and disaster: the role of data in the financial crisis, in Proceedings Casualty Actuarial Society E-Forum, 2010, p. 62

  2. 2.

    S. Newcomb, Am. J. Math. 4, 39 (1881)

    Article  MATH  MathSciNet  Google Scholar 

  3. 3.

    F. Benford, Proc. Am. Phil. Soc. 78, 551 (1938)

    Google Scholar 

  4. 4.

    A. Berger, T.P. Hill, Math. Intell. 33, 85 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. 5.

    E. Canessa, Physica A 328, 44 (2003)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  6. 6.

    N. Gauvrit, J.-P. Delahaye, Math. Sci. Hum. Math. Soc. Sci. 182, 7 (2008)

    MATH  MathSciNet  Google Scholar 

  7. 7.

    N. Gauvrit, J.-P. Delahaye, Math. Sci. Hum. Math. Soc. Sci. 186, 5 (2009)

    MATH  MathSciNet  Google Scholar 

  8. 8.

    T.P. Hill, Proc. Am. Math. Soc. 123, 887 (1995)

    MATH  Google Scholar 

  9. 9.

    T.P. Hill, Stat. Sci. 10, 354 (1995)

    MATH  Google Scholar 

  10. 10.

    R.S. Pinkham, Ann. Math. Stat. 32, 1223 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  11. 11.

    L. Pietronero, E. Tosatti, V. Tosatti, A. Vespignani, Physica A 293, 297 (2001)

    ADS  Article  MATH  Google Scholar 

  12. 12.

    T.A. Mir, Physica A 391, 792 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    T.A. Mir, Physica A 408, 1 (2014)

    ADS  Article  Google Scholar 

  14. 14.

    T.A. Mir, arXiv:1201.3432 (2012)

  15. 15.

    J.C. Pain, Phys. Rev. E 77, 012102 (2008)

    ADS  Article  Google Scholar 

  16. 16.

    L. Shao, B.Q. Ma, Mod. Phys. Lett. A 24, 3275 (2009)

    ADS  Article  Google Scholar 

  17. 17.

    M. Sambridge, H. Tkalčić, A. Jackson, Geo. Phys. Res. Lett. A 37, L22301 (2010)

    ADS  Google Scholar 

  18. 18.

    G. Judge, L. Schechter, J. Human Resources 44, 1 (2009)

    Article  Google Scholar 

  19. 19.

    W.R. Mebane Jr., Presp. Polit. 2, 525 (2004)

    Google Scholar 

  20. 20.

    B.F. Roukema, J. Appl. Stat. 41, 164 (2014)

    ADS  Article  Google Scholar 

  21. 21.

    W.K.T. Cho, B.J. Gaines, Am. Statist. 61, 218 (2007)

    Article  MathSciNet  Google Scholar 

  22. 22.

    P. Clippe, M. Ausloos, Physica A 15, 6556 (2012)

    ADS  Article  Google Scholar 

  23. 23.

    E. den Heijer, A.E. Eiben. Using aesthetic measures to evolve art, in IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, 2010 (IEEE Press)

  24. 24.

    F. Sandron, Population-E 57, 755 (2002)

    Article  Google Scholar 

  25. 25.

    T. Alexopoulos, S. Leontsinis, J. Astrophys. Astron. (2014), DOI:10.1007/s12036-014-9303-z

  26. 26.

    M. Ausloos, C. Herteliu, B. Ileanu, Physica A, in press, DOI:10.1016/j.physa.2014.10.041

  27. 27.

    T.P. Hill, A. Berger, Benford Online Bibliography, http://www.benfordonline.net/

  28. 28.

    C. Durtschi, W. Hillison, C. Pacini, J. Forensic Account. 1, 17 (2004)

    Google Scholar 

  29. 29.

    M.J. Nigrini, J. Am. Tax. Assoc. 18, 72 (1996)

    Google Scholar 

  30. 30.

    M.J. Nigrini, L.J. Mittermaier, J. Pract. Theory 16, 52 (1997)

    Google Scholar 

  31. 31.

    M.J. Nigrini, Benford’s law: applications for forensic accounting, auditing and fraud detection (Wiley Publications, New Jersey, 2012)

  32. 32.

    T.P. Hill, Chance 12, 27 (1999)

    Google Scholar 

  33. 33.

    H. Varian, Am. Statist. 23, 65 (1972)

    Google Scholar 

  34. 34.

    C. Carslaw, Accounting Rev. 63, 321 (1988)

    Google Scholar 

  35. 35.

    J. Kinnunen, M. Koskela, J. Int. Acc. Res. 2, 39 (2003)

    Article  Google Scholar 

  36. 36.

    R.M. Abrantes-Metz, G. Judge, S. Villas-Boas, Appl. Econ. Lett. 10, 893 (2011)

    Article  Google Scholar 

  37. 37.

    T. Michalski, G. Stoltz, Rev. Econ. Stat. 95, 591 (2013)

    Article  Google Scholar 

  38. 38.

    B. Rauch, M. Göttsche, G. Brähler, S. Engel, German Econ. Rev. 12, 243 (2011)

    Article  Google Scholar 

  39. 39.

    C.A. Holz, The Quality of China’s GDP Statistics, Stanford University, SCID Working Paper 487 (2013)

  40. 40.

    J. Nye, C. Moul, BE Journal of Macroeconomics 7, 17 (2007)

    Google Scholar 

  41. 41.

    A.H. Haynes, Scripps Senior Theses., Paper 42 (2012), http://scholarship.claremont.edu/scripps˙theses/42

  42. 42.

    G.G. Johnson, J. Weggenmann, Academy of Accounting and Financial Studies Journal 17, 31 (2013)

    Google Scholar 

  43. 43.

    J. Costa, J. Santos, S. Travassos, R. Cont. Fin. – USP, Sao Paulo 23, 187 (2012)

    Google Scholar 

  44. 44.

    D. Bartolini, R. Santolini, Ann. Reg. Sci. 49, 213 (2012)

    Article  Google Scholar 

  45. 45.

    E. Padovani, E. Scorsone, Measuring financial health of local governments a comparative framework, Year Book of Swiss Administrative Sciences (2011)

  46. 46.

    F. Schneider, The increase of the size of the shadow economy of 18 OECD countries: some preliminary explanations, IFO Working Paper 306 (2006)

  47. 47.

    G. Jones, Italy approves decree to stave off bankruptcy for Rome council (2014), http://www.reuters.com/assets/print?aid=USBREA1R1OD20140228

  48. 48.

    G. Brosio, A. Cassone, R. Ricciuti, Public Choice 112, 259 (2002)

    Article  Google Scholar 

  49. 49.

    F. Calderoni, Glob. Crime 12, 41 (2011)

    Article  Google Scholar 

  50. 50.

    F. Schneider, The value added of underground activities: size and measurement of the shadow economies of 110 countries all over the world, World Bank Working Paper Washington D.C. (2000)

  51. 51.

    P. Di Caro, G. Nicotra, Knowing the unknown across regions: spatial tax evasion across Italy (2014), DOI:10.2139/ssrn.2446803

  52. 52.

    M.R. Marino, R. Zizza, The personal income tax evasion in Italy: an estimate by taxpayer’s type, in Tax Evasion and the Shadow Economy, edited by M. Pickhardt, A. Prinz, (Edward Elgar Pub., Cheltenham, 2011)

  53. 53.

    C.V. Fiorio, F. D’Amuri, Giornale degli Economisti e Annali di Economia 64, 247 (2005)

    Google Scholar 

  54. 54.

    R. Galbiati, G. Zanella, J. Pub. Econ. 96, 485 (2012)

    Article  Google Scholar 

  55. 55.

    P. Missier, G. Lalk, V. Verykios, F. Grillo, T. Lorusso, P. Angeletti, Distributed Parallel Databases 13, 135 (2003)

    Article  MATH  Google Scholar 

  56. 56.

    J. Boyle, Am. Math. Month. 101, 879 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  57. 57.

    P.D. Scott, M. Fasli, Benford’s law: An empirical investigation and a novel explanation, CSM Technical Report 349 (2001), http://repository.essex.ac.uk

  58. 58.

    M. Alexeev, E. Janeba, S. Osborne, J. Comp. Econ. 32, 375 (2004)

    Article  Google Scholar 

  59. 59.

    B. Geys, G. Daniele, Organized Crime, Institutions and political quality: empirical evidence from Italian municipalities. Workshop Paper, https://politicalscience.stanford.edu/sites/default/files/workshop-materials/Paper˙Ginmarco˙0.pdf

  60. 60.

    M.A. Sergi, Ndrangheta and gangster politics in Calabria. The local side of a global threat, http://www.ecpr.eu/Filestore/PaperProposal/3f185089-adf3-4dee-8c11-000088f2fedc.pdf

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tariq Ahmad Mir.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mir, T.A., Ausloos, M. & Cerqueti, R. Benford’s law predicted digit distribution of aggregated income taxes: the surprising conformity of Italian cities and regions. Eur. Phys. J. B 87, 261 (2014). https://doi.org/10.1140/epjb/e2014-50525-2

Download citation

Keywords

  • Statistical and Nonlinear Physics