Radiation effects in nanoclusters embedded in solids

  • Aleksi A. Leino
  • Flyura Djurabekova
  • Kai Nordlund
Colloquium

Abstract

Nanoclusters embedded in hard solid materials such as silica show great promise for increased practical applications, as they combine the exciting nanosize effects with very high structural stability. Ion irradiation can be used to tailor the properties of these clusters, the perhaps most dramatic example being the use of swift heavy ions to reshape spherical metal nanoparticles to have antennas or become rods. In this article we review experimental and simulation studies of ion beam processing of nanoclusters embedded in solids.

Keywords

Solid State and Materials 

References

  1. 1.
    C.P. Poole, F.J. Owens, Introduction to Nanotechnology (John Wiley & Sons, New Jersey, 2003)Google Scholar
  2. 2.
    The International Technology Roadmap for Semiconductors, available online at www.itrs.net
  3. 3.
    X. Huang et al., in International Electron Devices Meeting Technical Digest, Washington, 1999, p. 67Google Scholar
  4. 4.
    S. Tiwari, F. Rana, K. Chan, L. Shi, H. Hanafi, Appl. Phys. Lett. 68, 1377 (1996)ADSGoogle Scholar
  5. 5.
    S. Tiwari, F. Rana, K. Chan, L. Shi, H. Hanafi, Appl. Phys. Lett. 69, 1232 (1996)ADSGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
    J. Fu, G. Li, X. Mao, K. Fang, Metall. Mater. Trans. A 42, 3797 (2011)Google Scholar
  9. 9.
    W.D. Callister Jr., Materials Science and Engineering, An Introduction, 3rd edn. (Wiley, New York, 1993)Google Scholar
  10. 10.
    D.A. Porter, K.E. Easterling, Phase Transformation in Metals and Alloys (Chapman & Hall, 1992)Google Scholar
  11. 11.
    A. Seeger, in The Nature of Radiation Damage in Metals (International Atomic Energy Agency, Vienna, 1962), Vol. 1, pp. 101–127Google Scholar
  12. 12.
    R.S. Averback, T. Diaz de la Rubia, in Solid State Physics, edited by H. Ehrenfest, F. Spaepen (Academic Press, New York, 1998), Vol. 51, pp. 281–402Google Scholar
  13. 13.
    S.J. Zinkle, J.T. Busby, Mater. Today 12, 12 (2009)Google Scholar
  14. 14.
    L. Mansur, A. Rowcliffe, R. Nanstad, S. Zinkle, W. Corwin, R. Stoller, J. Nucl. Mater. 329, 166 (2004)ADSGoogle Scholar
  15. 15.
    D. Schulz-Ertner, H. Tsujii, J. Clinical Oncology 25, 953 (2007)Google Scholar
  16. 16.
    M. Okamura, N. Yasuno, M. Ohtsuka, A. Tanaka, N. Shikazono, Y. Hase, Nucl. Instrum. Methods Phys. Res. B 206, 574 (2003)ADSGoogle Scholar
  17. 17.
    J.W. Mayer, S.S. Lau, Electronic Materials Science For Integrated Circuits in Si and GaAs (MacMillan, New York, 1990)Google Scholar
  18. 18.
    W. Bolse, in International conference on beam processing of advanced materials, Cleveland, 1995, p. 1Google Scholar
  19. 19.
    M.J. Caturla, T. Diaz de la Rubia, G.H. Gilmer, J. Appl. Phys. 77, 3121 (1995)ADSGoogle Scholar
  20. 20.
    K. Nordlund, R.S. Averback, Phys. Rev. B 59, 20 (1999)ADSGoogle Scholar
  21. 21.
    B. Weber, D.M. Stock, K. Gärtner, Nucl. Instrum. Methods Phys. Res. B 148, 375 (1999)ADSGoogle Scholar
  22. 22.
    K. Nordlund, J. Nord, J. Frantz, J. Keinonen, Comput. Mater. Sci. 18, 283 (2000)Google Scholar
  23. 23.
    E. Wendler, B. Breeger, W. Wesch, Nucl. Instrum. Methods Phys. Res. B 175, 83 (2001)ADSGoogle Scholar
  24. 24.
    A.V. Krasheninnikov, K. Nordlund, J. Appl. Phys. 107, 071301 (2010)ADSGoogle Scholar
  25. 25.
    S. Dhara, Crit. Rev. Solid State Mater. Sci. 32, 1 (2007)Google Scholar
  26. 26.
    K. Nordlund, F. Djurabekova, J. Comput. Electr. 13, 122 (2014)Google Scholar
  27. 27.
    K.H. Heinig, B. Schmidt, A. Markwitz, R. Grötzchel, M. Strobel, S. Oswald, Nucl. Instrum. Methods Phys. Res. B 148, 969 (1999)ADSGoogle Scholar
  28. 28.
    C. Bonafos et al., J. Appl. Phys. 95, 5696 (2004)ADSGoogle Scholar
  29. 29.
    C.W. White, J.D. Budai, S.P. Withrow, J.G. Zhu, E. Sonder, R.A. Zuhr, A. Meldrum, D.M. Hembree, D.O. Henderson, S. Prawer, Nucl. Instrum. Methods Phys. Res. B 141, 228 (1998)ADSGoogle Scholar
  30. 30.
    P.G. Kik, A. Polman, J. Appl. Phys. 88, 1992 (2000)ADSGoogle Scholar
  31. 31.
    K.H. Heinig, B. Schmidt, M. Strobel, H. Bernas, in Ion Beam Synthesis and Processing of Advanced Materials, edited by D.B. Poker, S.C. Moss, K.H. Heinig (MRS, 2000), Vol. 647Google Scholar
  32. 32.
    F. Ren, X.H. Xiao, G.X. Cai, J.B. Wang, C.Z. Jiang, Appl. Phys. A 96, 317 (2009)ADSGoogle Scholar
  33. 33.
    K. Baba, T. Kaneko, R. Hatakeyama, Appl. Phys. Express 2, 035006 (2009)ADSGoogle Scholar
  34. 34.
    S. Dhamodaran, A.P. Pathak, D.K. Avasthi, T. Srinivasan, R. Muralidharan, D. Emfietzoglou, Nucl. Instrum. Methods Phys. Res. B 257, 301 (2007)ADSGoogle Scholar
  35. 35.
    L. Khriachtchev, S. Novikov, O. Kilpelä, J. Appl. Phys. 87, 7805 (2000)ADSGoogle Scholar
  36. 36.
    L. Khriachtchev, M. Räsänen, S. Novikov, Appl. Phys. Lett. 88, 013102 (2006)ADSGoogle Scholar
  37. 37.
    I.V. Antonova, A.G. Cherkov, V.A. Skuratov, M.S. Kagan, J. Jedrzejewski, I. Balberg, Nanotechnology 20, 185401 (2009)ADSGoogle Scholar
  38. 38.
    G. Rizza et al., Phys. Rev. B 86, 035450 (2012)ADSGoogle Scholar
  39. 39.
    T. Cesca, B. Kalinic, C. Maurizio, C. Scian, G. Battaglin, P. Mazzoldi, G. Mattei, Nanoscale 6, 1716 (2014)ADSGoogle Scholar
  40. 40.
    W. Ostwald, Z. Elektrochem. Angew. Phys. Chem. 22, 289 (1897)Google Scholar
  41. 41.
    A. Flores, H. Goff, J. Dairy, Science 82, 1408 (1999)Google Scholar
  42. 42.
    P. Pronk, T. Hansen, C. Ferreira, G. Witkamp, Int. J. Refrigeration 28, 27 (2005)Google Scholar
  43. 43.
    G.C. Rizza, M. Strobel, K.H. Heinig, H. Bernas, Nucl. Instrum. Methods Phys. Res. B 178, 78 (2001)ADSGoogle Scholar
  44. 44.
    K.H. Heinig, T. Muller, B. Schmidt, M. Strobel, W. Moller, Appl. Phys. A 77, 17 (2003)ADSGoogle Scholar
  45. 45.
    K.A. Fichthorn, W.H. Weinberg, J. Chem. Phys. 95, 1090 (1991)ADSGoogle Scholar
  46. 46.
    A. La Magna, S. Coffa, L. Colombo, Nucl. Instrum. Methods Phys. Res. B 148, 262 (1999)ADSGoogle Scholar
  47. 47.
    A. La Magna, S. Coffa, Comput. Mater. Sci. 17, 21 (2000)Google Scholar
  48. 48.
    C.C. Battaile, Comput. Methods Appl. Mech. Eng. 197, 3386 (2008)MATHADSGoogle Scholar
  49. 49.
    B. Schmidt, K.H. Heinig, A. Mucklich, MRS Symp. Proc. 647, O11.20.1 (2000)Google Scholar
  50. 50.
    P. Kluth, B. Johannessen, G.J. Foran, D.J. Cookson, S.M. Kluth, M.C. Ridgway, Phys. Rev. B 74, 014202 (2006)ADSGoogle Scholar
  51. 51.
    G. Rizza, H. Cheverry, T. Gacoin, A. Lamas, S. Henry, J. Appl. Phys. 101, 014321 (2007)ADSGoogle Scholar
  52. 52.
    F. Kremer, J.M.J. Lopes, F.C. Zawislak, P.F.P. Fichtner, Appl. Phys. Lett. 91, 083102 (2007)ADSGoogle Scholar
  53. 53.
    F.P. Luce, F. Kremer, S. Reboh, Z.E. Fabrim, D.F. Sanchez, F.C. Zawislak, P.F.P. Fichtner, J. Appl. Phys. 109, 014320 (2011)ADSGoogle Scholar
  54. 54.
    D.F. Sanchez, F.P. Luce, Z.E. Fabrim, M.A. Sortica, P.F.P. Fichtner, P.L. Grande, Surf. Sci. 605, 654 (2011)ADSGoogle Scholar
  55. 55.
    G.A. Kachurin, M.O. Ruault, A.K. Gutakovsky, O. Kaitasov, S.G. Yanovskaya, K.S. Zhuravlev, H. Bernas, Nucl. Instrum. Methods Phys. Res. B 147, 356 (1999)ADSGoogle Scholar
  56. 56.
    G.A. Kachurin, S.G. Yanovskaya, M.O. Ruault, A.K. Gutakovskii, K.S. Zhuravlev, O. Kaitasov, H. Bernas, Semiconductors 34, 965 (2000)ADSGoogle Scholar
  57. 57.
    S. Cheylan, N. Langford, R.G. Elliman, Nucl. Instrum. Methods Phys. Res. B 166-167, 851 (2000)ADSGoogle Scholar
  58. 58.
    D. Pacifici, E.C. Moreira, G. Franzo, V. Martorino, F. Priolo, F. Iacona, Phys. Rev. B 65, 144109 (2002)ADSGoogle Scholar
  59. 59.
    D. Pacifici, G. Franzo, F. Iacona, F. Priolo, Physica E 16, 404 (2003)ADSGoogle Scholar
  60. 60.
    D.I. Tetelbaum, S.A. Trushin, V.A. Burdov, A.I. Golovanov, D.G. Revin, D.M. Gaponova, Nucl. Instrum. Methods Phys. Res. B 174, 123 (2001)ADSGoogle Scholar
  61. 61.
    U. Serincan, M. Kulakci, R. Turan, S. Foss, T.G. Finstad, Nucl. Instrum. Methods Phys. Res. B 254, 87 (2007)ADSGoogle Scholar
  62. 62.
    R. Khelifi, D. Mathiot, R. Gupta, D. Muller, M. Roussel, S. Duguay, Appl. Phys. Lett. 102, 013116 (2013)ADSGoogle Scholar
  63. 63.
    M.C. Ridgway, G. de M. Azevedo, R.G. Elliman, C.J. Glover, D.J. Llewellyn, R. Miller, W. Wesch, G.J. Foran, J. Hansen, A. Nylandsted-Larsen, Phys. Rev. B 71, 094107 (2005)ADSGoogle Scholar
  64. 64.
    L.L. Araujo, R. Giulian, B. Johannessen, D.J. Llewellyn, P. Kluth, G.D.M. Azevedo, D.J. Cookson, G.J. Foran, M.C. Ridgway, Nucl. Instrum. Methods Phys. Res. B 266, 3153 (2008)ADSGoogle Scholar
  65. 65.
    M. Backman, F. Djurabekova, O.H. Pakarinen, K. Nordlund, L.L. Araujo, M.C. Ridgway, Phys. Rev. B 80, 144109 (2009)ADSGoogle Scholar
  66. 66.
    F. Djurabekova, M. Backman, K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 266, 2683 (2008)Google Scholar
  67. 67.
    F. Djurabekova, M. Backman, O.H. Pakarinen, K. Nordlund, L. Araujo, M. Ridgway, Nucl. Instrum. Methods Phys. Res. B 267, 1235 (2009)ADSGoogle Scholar
  68. 68.
    F. Djurabekova, K. Nordlund, Phys. Rev. B 77, 115325 (2008), also selected to Virtual J. Nanoscale Sci. Technol. 17, 13 (2008)ADSGoogle Scholar
  69. 69.
    A. Kanjilal, L. Rebohle, N.K. Baddela, S. Zhou, M. Voelskow, W. Skorupa, M. Helm, Phys. Rev. B 79, 161302 (2009)ADSGoogle Scholar
  70. 70.
    B. Johannessen, P. Kluth, D.J. Llewellyn, G.J. Foran, D.J. Cookson, M.C. Ridgway, Appl. Phys. Lett. 90, 073119 (2007)ADSGoogle Scholar
  71. 71.
    R.S. Averback, K.L. Merkle, Phys. Rev. B 16, 3860 (1977)ADSGoogle Scholar
  72. 72.
    P. Kluth, B. Johannessen, R. Giulian, C. Schnohr, G. Foran, D. Cookson, A.P. Byrne, M. Ridgway, Radiat. Eff. Defects Solids 162, 501 (2007)ADSGoogle Scholar
  73. 73.
    L.G. Jacobsohn, J.D. Thompson, Y. Wang, A. Misra, R.K. Schulze, M. Nastasi, Nucl. Instrum. Methods Phys. Res. B 250, 201 (2006)ADSGoogle Scholar
  74. 74.
    G. Rizza, A. Dunlop, A. Dezellus, Nucl. Instrum. Methods Phys. Res. B 256, 219 (2007)ADSGoogle Scholar
  75. 75.
    P. Mazzoldi, G. Mattei, G. Battaglin, V. Bello, T. Cesca, S. Carturan, C.d.J. Fernandez, C. Maurizio, G. Pellegrini, C. Scian, Radiat. Eff. Defects Solids 168, 418 (2013)Google Scholar
  76. 76.
    C. D’Orleans, J.P. Stoquert, C. Estournes, C. Cerruti, J.J. Grob, J.L. Guille, F. Haas, D. Muller, M. Richard-Plouet, Phys. Rev. B 67, 220101 (2003)Google Scholar
  77. 77.
    H. Amekura, N. Ishikawa, N. Okubo, Y. Nakayama, K. Mitsuishi, Nucl. Instrum. Methods Phys. Res. B 269, 2730 (2011)ADSGoogle Scholar
  78. 78.
    H. Amekura, N. Ishikawa, N. Okubo, M.C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, C. Buchal, S. Mantl, N. Kishimoto, Phys. Rev. B 83, 205401 (2011)ADSGoogle Scholar
  79. 79.
    H. Amekura, N. Okubo, N. Ishikawa, D. Tsuya, K. Mitsuishi, Y. Nakayama, U.B. Singh, S.A. Khan, S. Mohapatra, D.K. Avasthi, Appl. Phys. Lett. 103, 203106 (2013)ADSGoogle Scholar
  80. 80.
    H. Amekura, M.L. Sele, N. Ishikawa, N. Okubo, Nanotechnology 23, 095704 (2012)ADSGoogle Scholar
  81. 81.
    L.L. Araujo, R. Giulian, D.J. Sprouster, C.S. Schnohr, D.J. Llewellyn, B. Johannessen, A.P. Byrne, M.C. Ridgway, Phys. Rev. B 85, 235417 (2012)ADSGoogle Scholar
  82. 82.
    D. Avasthi, Y. Mishra, F. Singh, J. Stoquert, Nucl. Instrum. Methods Phys. Res. B 268, 3027 (2010)ADSGoogle Scholar
  83. 83.
    K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, S. Fujii, H. Aiba, Y. Ohki, T. Komatsubara, Nucl. Instrum. Methods Phys. Res. B 267, 941 (2009)ADSGoogle Scholar
  84. 84.
    K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, T. Komatsubara, Phys. Rev. B 78, 054102 (2008)ADSGoogle Scholar
  85. 85.
    K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, T. Komatsubara, Phys. Rev. B 78, 054102 (2008)ADSGoogle Scholar
  86. 86.
    K. Awazu, X. Wang, T. Komatsubara, J. Watanabe, Y. Matsumoto, S. Warisawa, S. Ishihara, Nanotechnology 20, 325303 (2009)ADSGoogle Scholar
  87. 87.
    C. D’Orléans, J. Stoquert, C. Estournès, J. Grob, D. Muller, C. Cerruti, F. Haas, Nucl. Instrum. Methods Phys. Res. B 225, 154 (2004)ADSGoogle Scholar
  88. 88.
    C. D’Orléans, C. Cerruti, C. Estournès, J. Grob, J. Guille, F. Haas, D. Muller, M. Richard-Plouet, J. Stoquert, Nucl. Instrum. Methods Phys. Res. B 209, 316 (2003)ADSGoogle Scholar
  89. 89.
    C. D’Orléans, J. Stoquert, C. Estournès, J. Grob, D. Muller, J. Guille, M. Richard-Plouet, C. Cerruti, F. Haas, Nucl. Instrum. Methods Phys. Res. B 216, 372 (2004)ADSGoogle Scholar
  90. 90.
    E.A. Dawi, A.M. Vredenberg, G. Rizza, M. Toulemonde, Nanotechnology 22, 215607 (2011)ADSGoogle Scholar
  91. 91.
    E.A. Dawi, G. Rizza, M.P. Mink, A.M. Vredenberg, F.H.P.M. Habraken, J. Appl. Phys. 105, 074305 (2009)ADSGoogle Scholar
  92. 92.
    E. Dawi, A. Klimmer, G. Rizza, P. Ziemann, Nucl. Instrum. Methods Phys. Res. B 268, 481 (2010)ADSGoogle Scholar
  93. 93.
    C. Dufour, V. Khomenkov, G. Rizza, M. Toulemonde, J. Phys. D 45, 065302 (2012)ADSGoogle Scholar
  94. 94.
    M. Gilliot, A. En Naciri, L. Johann, J. Stoquert, J. Grob, D. Muller, Phys. Rev. B 76, 045424 (2007)ADSGoogle Scholar
  95. 95.
    R. Giulian, L.L. Araujo, P. Kluth, D.J. Sprouster, C.S. Schnohr, A.P. Byrne, M.C. Ridgway, J. Phys. D 44, 155401 (2011)ADSGoogle Scholar
  96. 96.
    R. Giulian, P. Kluth, L. Araujo, D. Sprouster, A.P. Byrne, D. Cookson, M.C. Ridgway, Phys. Rev. B 78, 125413 (2008)ADSGoogle Scholar
  97. 97.
    R. Giulian, P. Kluth, D. Sprouster, L. Araujo, A.P. Byrne, M. Ridgway, Nucl. Instrum. Methods Phys. Res. B 266, 3158 (2008)ADSGoogle Scholar
  98. 98.
    R. Giulian, F. Kremer, L.L. Araujo, D.J. Sprouster, P. Kluth, P.F.P. Fichtner, A.P. Byrne, M.C. Ridgway, Phys. Rev. B 82, 113410 (2010)ADSGoogle Scholar
  99. 99.
    C. Harkati Kerboua, M. Chicoine, S. Roorda, Nucl. Instrum. Methods Phys. Res. B 269, 2006 (2011)ADSGoogle Scholar
  100. 100.
    B.S. Roorda, T.V. Dillen, A. Polman, C. Graf, A.V. Blaaderen, B.J. Kooi, Adv. Mater. 2, 235 (2004)Google Scholar
  101. 101.
    C.H. Kerboua, J.M. Lamarre, M. Chicoine, L. Martinu, S. Roorda, Thin Solid Films 527, 186 (2013)ADSGoogle Scholar
  102. 102.
    S. Klaumünzer, Nucl. Instrum. Methods Phys. Res. B 244, 1 (2006)ADSGoogle Scholar
  103. 103.
    P. Kluth, R. Giulian, D.J. Sprouster, C.S. Schnohr, A.P. Byrne, D.J. Cookson, M.C. Ridgway, Appl. Phys. Lett. 94, 113107 (2009)ADSGoogle Scholar
  104. 104.
    H. Kumar, S. Ghosh, D.K. Avasthi, D. Kabiraj, A. Mücklich, S. Zhou, H. Schmidt, J.P. Stoquert, Nanoscale Res. Lett. 6, 155 (2011)ADSGoogle Scholar
  105. 105.
    A.A. Leino, O.H. Pakarinen, F. Djurabekova, K. Nordlund, P. Kluth, M.C. Ridgway, Mater. Res. Lett. 2, 37 (2014)Google Scholar
  106. 106.
    A.A. Leino, O.H. Pakarinen, F. Djurabekova, K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 282, 76 (2012)ADSGoogle Scholar
  107. 107.
    Y.K. Mishra, F. Singh, D.K. Avasthi, J.C. Pivin, D. Malinovska, E. Pippel, Appl. Phys. Lett. 91, 063103 (2007)ADSGoogle Scholar
  108. 108.
    S. Mohapatra, Y.K. Mishra, J. Ghatak, D.K. Avasthi, Adv. Matter. Lett. 4, 444 (2013)Google Scholar
  109. 109.
    A. Oliver, J. Reyes-Esqueda, J. Cheang-Wong, C. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. Seman, C. Noguez, Phys. Rev. B 74, 245425 (2006)ADSGoogle Scholar
  110. 110.
    V. Rodríguez-Iglesias, O. Pená-Rodríguez, H.G. Silva-Pereyra, L. Rodríguez-Fernández, G. Kellermann, J.C. Cheang-Wong, A. Crespo-Sosa, A. Oliver, J. Phys. Chem. C 114, 746 (2010)Google Scholar
  111. 111.
    J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A.M. Vredenberg, A. Polman, Nucl. Instrum. Methods Phys. Res. B 242, 523 (2006)ADSGoogle Scholar
  112. 112.
    J.A. Reyes-Esqueda, V. Rodríguez-Iglesias, H.G. Silva-Pereyra, C. Torres-Torres, A.L. Santiago-Ramírez, J.C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, A. López-Suárez, A. Oliver, Opt. Express 17, 12849 (2009)ADSGoogle Scholar
  113. 113.
    M.C. Ridgway et al., Phys. Rev. Lett. 106, 095505 (2011)ADSGoogle Scholar
  114. 114.
    M.C. Ridgway, P. Kluth, R. Giulian, D.J. Sprouster, L.L. Araujo, C.S. Schnohr, D.J. Llewellyn, A.P. Byrne, G.J. Foran, D.J. Cookson, Nucl. Instrum. Methods Phys. Res. B 267, 931 (2009)ADSGoogle Scholar
  115. 115.
    G. Rizza, E.A. Dawi, A.M. Vredenberg, I. Monnet, Appl. Phys. Lett. 95, 043105 (2009)ADSGoogle Scholar
  116. 116.
    G. Rizza, Y. Ramjauny, T. Gacoin, S. Henry, Nucl. Instrum. Methods Phys. Res. B 257, 15 (2007)ADSGoogle Scholar
  117. 117.
    G. Rizza, F. Attouchi, P.E. Coulon, S. Perruchas, T. Gacoin, I. Monnet, L. Largeau, Nanotechnology 22, 175305 (2011)ADSGoogle Scholar
  118. 118.
    V. Rodríguez-Iglesias, O. Peña Rodríguez, H.G. Silva-Pereyra, L. Rodríguez-Fernández, J.C. Cheang-Wong, A. Crespo-Sosa, J.A. Reyes-Esqueda, A. Oliver, Opt. Lett. 35, 703 (2010)ADSGoogle Scholar
  119. 119.
    B. Schmidt, K.H. Heinig, A. Mücklich, C. Akhmadaliev, Nucl. Instrum. Methods Phys. Res. B 267, 1345 (2009)ADSGoogle Scholar
  120. 120.
    B. Schmidt, A. Mücklich, L. Röntzsch, K.H. Heinig, Nucl. Instrum. Methods Phys. Res. B 257, 30 (2007)ADSGoogle Scholar
  121. 121.
    M. Shirai, T. Horiuchi, A. Horiguchi, S. Matsumura, K. Yasuda, M. Watanabe, T. Masumoto, Mater. Trans. 47, 52 (2006)Google Scholar
  122. 122.
    M. Shirai, K. Tsumori, M. Kutsuwada, K. Yasuda, S. Matsumura, Nucl. Instrum. Methods Phys. Res. B 267, 1787 (2009)ADSGoogle Scholar
  123. 123.
    H.G. Silva-Pereyra, J. Arenas-Alatorre, L. Rodriguez-Fernández, A. Crespo-Sosa, J.C. Cheang-Wong, J.A. Reyes-Esqueda, A. Oliver, J. Nanoparticle Res. 12, 1787 (2009)Google Scholar
  124. 124.
    F. Singh, S. Mohapatra, J.P. Stolquert, D.K. Avasthi, J.C. Pivin, Nucl. Instrum. Methods Phys. Res. B 267, 936 (2009)ADSGoogle Scholar
  125. 125.
    F. Singh, J.C. Pivin, D. Dimova-Malisnovska, J.P. Stoquert, J. Phys. D 44, 325101 (2011)Google Scholar
  126. 126.
    D.J. Sprouster, R. Giulian, L.L. Araujo, P. Kluth, B. Johannessen, D.J. Cookson, M.C. Ridgway, J. Appl. Phys. 109, 113504 (2011)ADSGoogle Scholar
  127. 127.
    D.J. Sprouster, M.C. Ridgway, Appl. Sci. 2, 396 (2012)Google Scholar
  128. 128.
    J. Pivin, F. Singh, Y. Mishra, D. Avasthi, J. Stoquert, Surf. Coat. Technol. 203, 2432 (2009)Google Scholar
  129. 129.
    B. Joseph, J. Ghatak, H. Lenka, P. Kuiri, G. Sahu, N. Mishra, D. Mahapatra, Nucl. Instrum. Methods Phys. Res. B 256, 659 (2007)ADSGoogle Scholar
  130. 130.
    K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, T. Komatsubara, Phys. Rev. B 78, 054102 (2008)ADSGoogle Scholar
  131. 131.
    H. Amekura, N. Ishikawa, N. Okubo, M.C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, C. Buchal, S. Mantl, N. Kishimoto, Phys. Rev. B 83, 205401 (2011)ADSGoogle Scholar
  132. 132.
    J.C. Pivin, S. Esnouf, F. Singh, D.K. Avasthi, J. Appl. Phys. 98, 023908 (2005)ADSGoogle Scholar
  133. 133.
    D. Mohanta, G.A. Ahmed, A. Choudhury, F. Singh, D.K. Avasthi, G. Boyer, G.A. Stanciu, Eur. Phys. J. Appl. Phys. 35, 29 (2006)ADSGoogle Scholar
  134. 134.
    A. Berthelot, S. Hémon, F. Gourbilleau, C. Dufour, E. Dooryhée, E. Paumier, Nucl. Instrum. Methods Phys. Res. B 146, 437 (1998)ADSGoogle Scholar
  135. 135.
    C.A. Volkert, J. Appl. Phys. 70, 3521 (1991)ADSGoogle Scholar
  136. 136.
    E. Snoeks, A. Polman, C.A. Volkert, Appl. Phys. Lett. 65, 2487 (1994)ADSGoogle Scholar
  137. 137.
    H. Trinkaus, J. Nucl. Mater. 223, 196 (1995)ADSGoogle Scholar
  138. 138.
    A. Stalmashonak, G. Seifert, H. Graener, Opt. Lett. 32, 3215 (2007)ADSGoogle Scholar
  139. 139.
    A. Meftah, F. Brisard, J.M. Costantini, E. Dooryhee, M. Hage-Ali, M. Hervieu, J.P. Stoquert, F. Studer, M. Toulemonde, Phys. Rev. B 49, 12457 (1994)ADSGoogle Scholar
  140. 140.
    M. Toulemonde, C. Dufour, A. Meftah, E. Paunier, Nucl. Instrum. Methods Phys. Res. B 166-167, 903 (2000)ADSGoogle Scholar
  141. 141.
    M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, C. Trautmann, Mat. Fys. Medd. Kong. Dan. Vid. Selsk. 52, 263 (2006)Google Scholar
  142. 142.
    C. Schäfer, H.M. Urbassek, L.V. Zhigilei, Phys. Rev. B 66, 115404 (2002)ADSGoogle Scholar
  143. 143.
    D.S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)ADSGoogle Scholar
  144. 144.
    A.M. Rutherford, D.M. Duffy, J. Phys.: Condens. Matter 19, 496201 (2007)Google Scholar
  145. 145.
    L. Koci, E.M. Bringa, D.S. Ivanov, J. Hawreliak, J. McNaney, A. Higginbotham, L.V. Zhigilei, A.B. Belonoshko, B.A. Remington, R. Ahuja, Phys. Rev. B 74, 012101 (2006)ADSGoogle Scholar
  146. 146.
    A.A. Leino, O.H. Pakarinen, K. Nordlund, F. Djurabekova, S.L. Daraszewicz, Europhys. Lett. (2014), submitted for publicationGoogle Scholar
  147. 147.
    P. Kluth et al., Phys. Rev. Lett. 101, 175503 (2008)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Aleksi A. Leino
    • 1
  • Flyura Djurabekova
    • 1
  • Kai Nordlund
    • 1
  1. 1.Department of Physics and Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations