Skip to main content
Log in

Invisible surface defects in a tight-binding lattice

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Surface Tamm states arise in one-dimensional lattices from some defects at the lattice edge and their energy generally falls in a gap of the crystal. The defects at the surface change rather generally the phase of propagative Bloch waves scattered off at the lattice edge, so that an observer, far from the surface, can detect the existence of edge defects from e.g. time-of-flight measurements as a delay or an advancement of a Bloch wave packet. Here we show that a special class of defects can sustain surface Tamm states which are invisible, in a sense that reflected waves acquire the same phase as in a fully homogeneous lattice with no surface state. Surface states have an energy embedded into the tight-binding lattice band and show a lower than exponential (algebraic) localization. Like most of bound states in the continuum of von Neumann-Wigner type, such states are fragile and decay into resonance surface states in presence of perturbations or lattice disorder. The impact of structural lattice imperfections and disorder on the invisibility of the defects is investigated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.G. Davidson, M. Steslicka, Basic Theory of Surface States (Oxford Science Publications, New York, 1996)

  2. I.E. Tamm, Phys. Z. Sowjetunion 1, 733 (1932)

    Google Scholar 

  3. W. Shockley, Phys. Rev. 56, 317 (1939)

    Article  MATH  ADS  Google Scholar 

  4. A.B. Lippmann, Ann. Phys. 2, 16 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. J. Zak, Phys. Rev. B 32, 2218 (1985)

    Article  ADS  Google Scholar 

  6. H. Ohno, E.E. Mendez, J.A. Brum, J.M. Hong, F. Agullo-Rueda, L.L. Chang, L. Esaki, Phys. Rev. Lett. 64, 2555 (1990)

    Article  ADS  Google Scholar 

  7. H. Ohno, E.E. Mendez, A. Alexandrou, J.M. Hong, Surf. Sci. 267, 161 (1992)

    Article  ADS  Google Scholar 

  8. P. Yeh, A. Yariv, A.Y. Cho, Appl. Phys. Lett. 32, 104 (1978)

    Article  ADS  Google Scholar 

  9. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988)

  10. E. Moreno, F.J. Garcõa-Vidal, L. Martin-Moreno, Phys. Rev. B 69, 121402 (2004)

    Article  ADS  Google Scholar 

  11. A.K. Kavokin, I.A. Shelykh, G. Malpuech, Phys. Rev. B 72, 233102 (2005)

    Article  ADS  Google Scholar 

  12. N. Malkova, C.Z. Ning, Phys. Rev. B 73, 113113 (2006)

    Article  ADS  Google Scholar 

  13. A. Szameit, I.L. Garanovich, M. Heinrich, A.A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tunnermann, Y.S. Kivshar, Phys. Rev. Lett. 101, 203902 (2008)

    Article  ADS  Google Scholar 

  14. N. Malkova, I. Hromada, X.S. Wang, G. Bryant, Z.G. Chen, Opt. Lett. 34, 1633 (2009)

    Article  ADS  Google Scholar 

  15. N. Malkova, I. Hromada, X. Wang, G. Bryant, Z. Chen, Phys. Rev. A 80, 043806 (2009)

    Article  ADS  Google Scholar 

  16. K.G. Makris, S. Suntsov, D.N. Christodoulides, G.I. Stegeman, A. Hache, Opt. Lett. 30, 2466 (2005)

    Article  ADS  Google Scholar 

  17. S. Suntsov, K.G. Makris, D.N. Christodoulides, G.I. Stegeman, A. Hache, R. Morandotti, H. Yang, G. Salamo, M. Sorel, Phys. Rev. Lett. 96, 063901 (2006)

    Article  ADS  Google Scholar 

  18. Y.V. Kartashov, V.A. Vysloukh, L. Torner, Phys. Rev. Lett. 96, 073901 (2006)

    Article  ADS  Google Scholar 

  19. E. Smirnov, M. Stepic, C.E. Ruter, D. Kip, V. Shandaro, Opt. Lett. 31, 2338 (2006)

    Article  ADS  Google Scholar 

  20. C.R. Rosberg, D.N. Neshev, W. Krolikowski, A. Mitchell, R.A. Vicencio, M.I. Molina, Y.S. Kivshar, Phys. Rev. Lett. 97, 083901 (2006)

    Article  ADS  Google Scholar 

  21. Y.S. Kivshar, Laser Phys. Lett. 5, 703 (2008)

    Article  ADS  Google Scholar 

  22. J. von Neumann, E. Wigner, Phys. Z. 30, 465 (1929)

    Google Scholar 

  23. M.I. Molina, A.E. Miroshnichenko, Y.S. Kivshar, Phys. Rev. Lett. 108, 070401 (2012)

    Article  ADS  Google Scholar 

  24. G. Corrielli, G. Della Valle, A. Crespi, R. Osellame, S. Longhi, Phys. Rev. Lett. 111, 220403 (2013)

    Article  ADS  Google Scholar 

  25. Z. Chen, P. Han, C.W. Leung, Y. Wang, M. Hu, Y. Chen, Opt. Express 20, 21618 (2012)

    Article  ADS  Google Scholar 

  26. W. Mönch, in Semiconductor Surface and Interfaces, 3rd edn. (Springer, 2001), Vol. 26, Sect. 3.3

  27. A. Groß, in Theoretical Surface Science: A Microscopic Perspective, 2nd edn. (Springer, 2009), Vol. 13, p. 58

  28. I. Kay, H.E. Moses, J. Appl. Phys. 27, 1503 (1956)

    Article  MATH  ADS  Google Scholar 

  29. P.G. Drazin, R.S. Johnson, in Solitons – An Introduction, 2nd edn. (Cambridge University Press, Cambridge, 1988), Chap. 3

  30. A.A. Sukhorukov, Opt. Lett. 35, 989 (2010)

    Article  Google Scholar 

  31. A. Szameit, F. Dreisow, M. Heinrich, S. Nolte, A.A. Sukhorukov, Phys. Rev. Lett. 106, 193903 (2011)

    Article  ADS  Google Scholar 

  32. S. Longhi, Phys. Rev. A 82, 032111 (2010)

    Article  ADS  Google Scholar 

  33. S. Longhi, G. Della Valle, Ann. Phys. 334, 35 (2013)

    Article  MATH  ADS  Google Scholar 

  34. S. Longhi, Opt. Lett. 39, 1697 (2014)

    Article  ADS  Google Scholar 

  35. E.T. Goodwin, Proc. Camb. Phil. Soc. 35, 205 (1939)

    Article  ADS  Google Scholar 

  36. E.T. Goodwin, Proc. Camb. Phil. Soc. 35, 221 (1939)

    Article  MATH  ADS  Google Scholar 

  37. E.T. Goodwin, Proc. Camb. Phil. Soc. 35, 232 (1939)

    Article  MATH  ADS  Google Scholar 

  38. J. Heinrichs, J. Phys.: Condens. Matter 12, 5565 (2000)

    Article  ADS  Google Scholar 

  39. S. Longhi, G. Della Valle, Phys. Rev. A 89, 052132 (2014)

    Article  ADS  Google Scholar 

  40. L. Fonda, R.G. Newton, Ann. Phys. 10, 490 (1960)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. S. Longhi, G. Della Valle, Sci. Rep. 3, 2219 (2013)

    Article  ADS  Google Scholar 

  42. K. Yagasaki, A.R. Champneys, B.A. Malomed, Nonlinearity 18, 2591 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. J. Yang, B.A. Malomed, D.J. Kaup, Phys. Rev. Lett. 83, 1958 (1999)

    Article  ADS  Google Scholar 

  44. A.R. Champneys, B.A. Malomed, J. Yang, D.J. Kaup, Physica D 152, (2001)

  45. B.A. Malomed, J. Fujioka, A. Espinosa-Ceron, R.F. Rodriguez, S. Gonzalez, Chaos 16, 013112 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Longhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longhi, S. Invisible surface defects in a tight-binding lattice. Eur. Phys. J. B 87, 189 (2014). https://doi.org/10.1140/epjb/e2014-50331-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50331-x

Keywords

Navigation