Skip to main content
Log in

Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Perceptrons are one of the fundamental paradigms in artificial neural networks and a key processing scheme in supervised classification tasks. However, the algorithm they provide is given in terms of unrealistically simple processing units and connections and therefore, its implementation in real neural networks is hard to be fulfilled. In this work, we present a neural circuit able to perform perceptron’s computation based on realistic models of neurons and synapses. The model uses Wang-Buzsáki neurons with coupling provided by axodendritic and axoaxonic synapses (heterosynapsis). The main characteristics of the feedforward perceptron operation are conserved, which allows to combine both approaches: whereas the classical artificial system can be used to learn a particular problem, its solution can be directly implemented in this neural circuit. As a result, we propose a biologically-inspired system able to work appropriately in a wide range of frequencies and system parameters, while keeping robust to noise and error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms (Spartan Books, Washington, 1962)

  2. D.E. Rumelhart, G.E. Hinton, R.J. Williams, Nature 323, 533 (1986)

    Article  ADS  Google Scholar 

  3. J.J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  4. J. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation (Addison-Wesley, New York, 1991)

  5. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952)

    Google Scholar 

  6. X.-J. Wang, Physiol. Rev. 90, 1195 (2010)

    Article  Google Scholar 

  7. M. Bartos, I. Vida, P. Jonas, Nat. Rev. Neurosci. 8, 45 (2007)

    Article  Google Scholar 

  8. R. Krahe, F. Gabbiani, Nat. Rev. Neurosci. 5, 13 (2004)

    Article  Google Scholar 

  9. B.P. Bean, Nat. Rev. Neurosci. 8, 451 (2007)

    Article  Google Scholar 

  10. W. Maass, Neural Networks 10, 1659 (1997)

    Article  Google Scholar 

  11. Y. Kuramoto, Chemical Oscillations, Waves, Turbulence (Springer, New York, 1984)

  12. T. Aoyagi, Phys. Rev. Lett. 74, 4075 (1995)

    Article  ADS  Google Scholar 

  13. T. Aonishi, K. Kurata, M. Okada, Phys. Rev. Lett. 82, 2800 (1999)

    Article  ADS  Google Scholar 

  14. T. Nishikawa, Y.-C. Lai, F.C. Hoppensteadt, Phys. Rev. Lett. 92, 108101 (2004)

    Article  ADS  Google Scholar 

  15. P. Kaluza, T. Cioaca, Neurocomputing 97, 115 (2012)

    Article  Google Scholar 

  16. P. Kaluza, Neurocomputing 118, 127 (2013)

    Article  Google Scholar 

  17. S.M. Bohte, J.N. Kok, H. La Poutré, Neurocomputing 48, 17 (2002)

    Article  MATH  Google Scholar 

  18. P. D’Souza, S.-C. Liu, R.H.R. Hahnloser, Proc. Natl. Acad. Sci. USA 107, 4722 (2010)

    Article  ADS  Google Scholar 

  19. L. Serrano, Mol. Syst. Biol. 3, 158 (2007)

    Article  Google Scholar 

  20. X.-J. Wang, G. Buzsáki, J. Neurosci. 16, 6402 (1996)

    Google Scholar 

  21. J.A. White, C.C. Chow, J. Ritt, C. Soto-Treviño, N. Kopell, J. Comput. Neurosci. 5, 5 (1998)

    Article  MATH  Google Scholar 

  22. D. Hansel, G. Mato, Neural Comput. 15, 1 (2003)

    Article  MATH  Google Scholar 

  23. J.A. White, M.I. Banks, R.A. Pearce, N.J. Kopell, Proc. Natl. Acad. Sci. USA 97, 8128 (2000)

    Article  ADS  Google Scholar 

  24. P.H.E. Tiesinga, J.-M. Fellous, J.V. José, T.J. Sejnowski, Hippocampus 11, 251 (2001)

    Article  Google Scholar 

  25. P.H.E. Tiesinga, T.J. Sejnowski, Neural Comput. 16, 251 (2004)

    Article  MATH  Google Scholar 

  26. P.H. Tiesinga, J.-M. Fellous, E. Salinas, J.V. José, T.J. Sejnowski, J. Physiol. 98, 296 (2004)

    Google Scholar 

  27. G. Mato, I. Samengo, Neural Comput. 20, 2418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. A.B. MacDermott, L.W. Role, S.A. Siegelbaum, Ann. Rev. Neurosci. 22, 443 (1999)

    Article  Google Scholar 

  29. C.H. Bailey, M. Giustetto, Y.-Y. Huang, R.D. Hawkins, E.R. Kandel, Nat. Rev. Neurosci. 1, 11 (2000)

    Article  Google Scholar 

  30. A.J. Cochilla, S. Alford, J. Neurosci. 19, 193 (1999)

    Google Scholar 

  31. D. Schmitz, S. Schuchmann, A. Fisahn, A. Draguhn, E.H. Buhl, E. Petrasch-Parwez, R. Dermietzel, U. Heinemann, R.D. Traub, Neuron 31, 831 (2001)

    Article  Google Scholar 

  32. B. Lamotte D’Incamps, C. Meunier, M.-L. Monnet, L. Jami, D. Zytnicki, J. Comput. Neurosci. 5, 141 (1998)

    Article  MATH  Google Scholar 

  33. P. Peretto, J.J. Niez, Biol. Cybern. 54, 53 (1986)

    Article  MATH  Google Scholar 

  34. J.J. Arenzon, R.M.C. de Almeida, Phys. Rev. E 48, 4060 (1993)

    Article  ADS  Google Scholar 

  35. R. Rojas, Neural Networks – A Systematic Introduction (Springer-Verlag, Berlin, 1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Kaluza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaluza, P., Urdapilleta, E. Perceptron-like computation based on biologically-inspired neurons with heterosynaptic mechanisms. Eur. Phys. J. B 87, 236 (2014). https://doi.org/10.1140/epjb/e2014-50322-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50322-y

Keywords

Navigation