Skip to main content
Log in

Electron interaction effects on the thermoelectric power of a quantum dot at T > TK

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the absence of phonon thermal conductivity, we theoretically investigate the output power of an interacting quantum dot thermoelectric setup that is moderately coupled to two electronic reservoirs in the regime TT K . In the noninteracting case, the output power is maximized when the energy level of the dot is around a critical value ε c . We find that when the energy level of the dot is lower than ε c , Coulomb interaction can enhance the maximum thermoelectric power that can be achieved by tuning the bias and a wider operating region is also observed. However, when the energy level of the dot is higher than ε c , Coulomb interaction suppresses the maximum power. Finally when the dot level is around ε c , Coulomb interaction has minimal effects on the maximum power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z. Ren, J.P. Fleurial, P. Gogna, Adv. Mater. 19, 1043 (2007)

    Article  Google Scholar 

  2. G.J. Snyder, E.R. Toberer, Nat. Mater. 7, 105 (2008)

    Article  ADS  Google Scholar 

  3. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321, 554 (2008)

    Article  ADS  Google Scholar 

  4. G. Pernot et al., Nat. Mater. 9, 491 (2010)

    Article  ADS  Google Scholar 

  5. J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese, J.R. Heath, Nat. Nanotech. 5, 718 (2010)

    Article  ADS  Google Scholar 

  6. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, Science 320, 634 (2008)

    Article  ADS  Google Scholar 

  7. Y. Pei, H. Wang, G.J. Snyder, Adv. Mater. 24, 6125 (2012)

    Article  Google Scholar 

  8. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993)

    Article  ADS  Google Scholar 

  9. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993)

    Article  ADS  Google Scholar 

  10. A. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  11. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath, Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  12. T. Markussen, A.-P. Jauho, M. Brandbyge, Phys. Rev. B 79, 035415 (2009)

    Article  ADS  Google Scholar 

  13. H.J. Ryu, Z. Aksamija, D.M. Paskiewicz, S.A. Scott, M.G. Lagally, I. Knezevic, M.A. Eriksson, Phys. Rev. Lett. 105, 256601 (2010)

    Article  ADS  Google Scholar 

  14. G.D. Mahan, J.O. Sofo, Proc. Natl. Acad. Sci. USA 93, 7436 (1996)

    Article  ADS  Google Scholar 

  15. T.E. Humphrey, H. Linke, Phys. Rev. Lett. 94, 096601 (2005)

    Article  ADS  Google Scholar 

  16. N. Nakpathomkun, H.Q. Xu, H. Linke, Phys. Rev. B 82, 235428 (2010)

    Article  ADS  Google Scholar 

  17. T.E. Humphrey, R. Newbury, R.P. Taylor, H. Linke, Phys. Rev. Lett. 89, 116801 (2002)

    Article  ADS  Google Scholar 

  18. M. Leijnse, M.R. Wegewijs, K. Flensberg, Phys. Rev. B 82, 045412 (2010)

    Article  ADS  Google Scholar 

  19. Y.-S. Liu, D.-B. Zhang, X.-F. Yang, J.-F. Feng, Nanotechnology 22, 225201 (2011)

    Article  ADS  Google Scholar 

  20. S. Donsa, S. Andergassen, K. Held, Phys. Rev. B 89, 125103 (2014)

    Article  ADS  Google Scholar 

  21. B. Muralidharan, M. Grifoni, Phys. Rev. B 85, 155423 (2012)

    Article  ADS  Google Scholar 

  22. N.A. Zimbovskaya, J. Chem. Phys. 140, 104706 (2014)

    Article  ADS  Google Scholar 

  23. J. Ren, J.-X. Zhu, J.E. Gubernatis, C. Wang, B. Li, Phys. Rev. B 85, 155443 (2012)

    Article  ADS  Google Scholar 

  24. D.M.-T. Kuo, Y.-C. Chang, Phys. Rev. B 81, 205321 (2010)

    Article  ADS  Google Scholar 

  25. M. Krawiec, K.I. Wysokiński, Phys. Rev. B 75, 155330 (2007)

    Article  ADS  Google Scholar 

  26. D.M. Kennes, D. Schuricht, V. Meden, Europhys. Lett. 102, 57003 (2013)

    Article  ADS  Google Scholar 

  27. S. Andergassen, T.A. Costi, V. Zlatić, Phys. Rev. B 84, 241107(R) (2011)

    Article  ADS  Google Scholar 

  28. J. Azema, A.-M. Daré, S. Schäfer, P. Lombardo, Phys. Rev. B 86, 075303 (2012)

    Article  ADS  Google Scholar 

  29. P. Roura-Bas, L. Tosi, A.A. Aligia, P.S. Cornaglia, Phys. Rev. B 86, 165106 (2012)

    Article  ADS  Google Scholar 

  30. M. Esposito, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 102, 130602 (2009)

    Article  ADS  Google Scholar 

  31. M. Esposito, K. Lindenberg, C. Van den Broeck, Europhys. Lett. 85, 60010 (2009)

    Article  ADS  Google Scholar 

  32. H. Haug, A.-P. Jauho, in Quantum Kinetics in Transport and Optics of Semiconductors, 2nd edn., Springer Solid State Series (Springer, Berlin, 2008), Vol. 123

  33. R.A. Jishi, Feynman Diagram Techniques in Condensed Matter Physics (Cambridge University Press, Cambridge, 2013)

  34. B. Song, D.A. Ryndyk, G. Cuniberti, Phys. Rev. B 76, 045408 (2007)

    Article  ADS  Google Scholar 

  35. R. Bulla, T.A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  36. T.A. Costi, V. Zlatić, Phys. Rev. B 81, 235127 (2010)

    Article  ADS  Google Scholar 

  37. L. Mühlbacher, E. Rabani, Phys. Rev. Lett. 100, 176403 (2008)

    Article  ADS  Google Scholar 

  38. J. Eckel, F. Heidrich-Meisner, S.G. Jakobs, M. Thorwart, M. Pletyukhov, R. Egger, New J. Phys. 12, 043042 (2010)

    Article  ADS  Google Scholar 

  39. K.T. Regner, D.P. Sellan, Zo. Su, C.H. Amon, A.J.H. McGaughey, J.A. Malen, Nat. Commun. 4, 1640 (2013)

    Article  ADS  Google Scholar 

  40. T. Luo, J. Garg, J. Shiomi, K. Esfarjani, G. Chen, Europhys. Lett. 101, 16001 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Y., Wu, H., Jiang, F. et al. Electron interaction effects on the thermoelectric power of a quantum dot at T > TK . Eur. Phys. J. B 87, 244 (2014). https://doi.org/10.1140/epjb/e2014-50312-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50312-1

Keywords

Navigation