Skip to main content
Log in

Interaction-created effective flat bands in conducting polymers

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

For a general class of conducting polymers with arbitrary large unit cell and different on-site Coulomb repulsion values on different type of sites, I demonstrate in exact terms the emergence possibility of an upper, interaction-created “effective” flat band. This last appears as a consequence of a kinetic energy quench accompanied by a strong interaction energy decrease, and leads to a non-saturated ferromagnetic state. This ordered state clearly differs from the known flat-band ferromagnetism. This is because it emerges in a system without bare flat bands, requires inhomogeneous on-site Coulomb repulsions values, and possesses non-zero lower interaction limits at the emergence of the ordered phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kohn, Rev. Mod. Phys. 71, 1253 (1998)

    Article  ADS  Google Scholar 

  2. V.I. Anisimov, F. Aryasetianwan, A.I. Lichtenstein, J. Phys: Condens. Matter 9, 767 (1997)

    ADS  Google Scholar 

  3. F. Aryasetianwan, O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998)

    Article  ADS  Google Scholar 

  4. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  5. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Städele, R.M. Martin, Phys. Rev. Lett. 84, 6070 (2000)

    Article  ADS  Google Scholar 

  7. E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968)

    Article  ADS  Google Scholar 

  8. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  9. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  10. R. Takahashi, S. Murakami, Phys. Rev. B 88, 235303 (2013)

    Article  ADS  Google Scholar 

  11. G. Möller, N.R. Cooper, Phys. Rev. Lett. 108, 045306 (2012)

    Article  ADS  Google Scholar 

  12. O. Derzhko, J. Richter, A. Honecker, R. Moessner, Phys. Rev. B 81, 014421 (2010)

    Article  ADS  Google Scholar 

  13. Z. Gulácsi, Phys. Rev. B 77, 245113 (2008)

    Article  ADS  Google Scholar 

  14. A. Mielke, H. Tasaki, Commun. Math. Phys. 158, 341 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Z. Gulácsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 105, 266403 (2010)

    Article  ADS  Google Scholar 

  16. Z. Gulácsi, Int. J. Mod. Phys. B 27, 1330009 (2013)

    Article  ADS  Google Scholar 

  17. A.S. Dhoot et al., Phys. Rev. Lett. 96, 246403 (2006)

    Article  ADS  Google Scholar 

  18. A.C.R. Grayson et al., Nat. Mater. 2, 767 (2003)

    Article  ADS  Google Scholar 

  19. R. McNeill et al., Aust. J. Chem. 16, 1056 (1963)

    Article  Google Scholar 

  20. J.W. van der Horst, P.A. Bobbert, M.A.J. Michels, Phys. Rev. Lett. 83, 4413 (1999)

    Article  ADS  Google Scholar 

  21. O.R. Nascimento et al., Phys. Rev. B 67, 14422 (2003)

    Article  Google Scholar 

  22. F.R. de Paula et al., J. Magn. Magn. Mater. 320, 193 (2008)

    Article  Google Scholar 

  23. A.A. Correa et al., Synth. Met. 121, 1836 (2001)

    Article  Google Scholar 

  24. A.J. Heeger et al., Rev. Mod. Phys. 60, 781 (1988)

    Article  ADS  Google Scholar 

  25. T.O. Wehling et al., Phys. Rev. Lett. 106, 236805 (2011)

    Article  ADS  Google Scholar 

  26. G. Brocks, J. Van den Brink, A.F. Morpurgo, Phys. Rev. Lett. 93, 146405 (2004)

    Article  ADS  Google Scholar 

  27. Y. Suwa et al., Phys. Rev. B 68, 174419 (2003)

    Article  ADS  Google Scholar 

  28. R. Arita et al., Phys. Rev. Lett. 88, 127202 (2002)

    Article  ADS  Google Scholar 

  29. R. Arita et al., Phys. Rev. B 68, 140403(R) (2003)

    Article  ADS  Google Scholar 

  30. Z. Gulácsi, M. Gulacsi, Phys. Rev. Lett. 73, 3239 (1994)

    Article  ADS  Google Scholar 

  31. R. Trencsényi, E. Kovács, Z. Gulácsi, Phil. Mag. 89, 1953 (2009)

    Article  ADS  Google Scholar 

  32. R. Trencsényi, Z. Gulácsi, Phil. Mag. 92, 4657 (2012)

    Article  ADS  Google Scholar 

  33. R. Trencsényi, K. Gulácsi, E. Kovács, Z. Gulácsi, Ann. Phys. (Berlin) 523, 741 (2011)

    Article  ADS  Google Scholar 

  34. R. Trencsényi, Z. Gulácsi, Eur. Phys. J. B 75, 511 (2010)

    Article  ADS  Google Scholar 

  35. M. Gulacsi, H. Van Beijeren, A.C. Levi, Phys. Rev. E 47, 2473 (1993)

    Article  ADS  Google Scholar 

  36. M. Gulacsi, Phil. Mag. B 76, 731 (1997)

    Article  ADS  Google Scholar 

  37. M. Gulacsi, R. Chan, J. Supercond. 14, 651 (2001)

    Article  ADS  Google Scholar 

  38. R. Chan, M. Gulacsi, Phil. Mag. Lett. 81, 673 (2001)

    Article  Google Scholar 

  39. R. Chan, M. Gulacsi, Phil. Mag. 84, 1265 (2004)

    Article  ADS  Google Scholar 

  40. D.J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012)

    Article  ADS  Google Scholar 

  41. Z. Gulácsi, D. Vollhardt, Phys. Rev. B 72, 075130 (2005)

    Article  ADS  Google Scholar 

  42. Z. Gulácsi, A. Kampf, D. Vollhardt, Phys. Rev. Lett. 99, 026404 (2007)

    Article  ADS  Google Scholar 

  43. Z. Gulácsi, A. Kampf, D. Vollhardt, Prog. Theor. Phys. Suppl. 176, 1 (2008)

    Article  ADS  MATH  Google Scholar 

  44. I. Orlik, Z. Gulácsi, Phil. Mag. Lett. 78, 177 (1998)

    Article  Google Scholar 

  45. Z. Gulácsi, I. Orlik, J. Phys. A 34, L359 (2001)

    Article  Google Scholar 

  46. P. Gurin, Z. Gulácsi, Phys. Rev. B 64, 045118 (2001)

    Article  ADS  Google Scholar 

  47. Z. Gulácsi, Eur. Phys. J. B 30, 295 (2002)

    Article  ADS  Google Scholar 

  48. Z. Gulácsi, Phys. Rev. B 66, 165109 (2002)

    Article  ADS  Google Scholar 

  49. Z. Gulácsi, D. Vollhardt, Phys. Rev. Lett. 91, 186401 (2003)

    Article  ADS  Google Scholar 

  50. Z. Gulácsi, Phys. Rev. B 69, 054204 (2004)

    Article  ADS  Google Scholar 

  51. Z. Gulácsi, M. Gulacsi, Phys. Rev. B 73, 014524 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Gulácsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gulácsi, Z. Interaction-created effective flat bands in conducting polymers. Eur. Phys. J. B 87, 143 (2014). https://doi.org/10.1140/epjb/e2014-50294-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50294-x

Keywords

Navigation